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Introduction: Motivation of Multiple Testing
and FDR Research Areas
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Data: Anderson and Habiger (2012)

Biology Theory : Ecosystem of micro-organisms (OTUs)
near the roots of wheat (stomache of wheat plant).

Question : Which species (OTUs) are associated with
productivity?

Productivity/Shoot Biomass (g)
OTU # 0.85 1.33 1.81 2.37 3.00

1 0 1 1 0 5
2 9 2 0 0 3
...

...
...

...
...

...
M = 778 16 10 29 18 13
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Goal 778
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Model

Data: Ymj prevelence of mth OTU in j th productivity
group
Model:

Ymj ∼ Poisson(eβ0m+β1mxj )

Hypotheses: H0m : β1m = 0 vs. H1m : β1m 6= 0
Sufficient Stat: Tm =

∑5
j=1 xjYmj

Ancillary Stat: Ym· =
∑5

j=1 Ymj
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A single test

Ym1,Ym2, ...,Ym5|Ym· ∼ Multi(Ym·, 1/5) under Hm0

Distn of T under H0 for OTU 2

T
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T2 = 19.31 → p-value = 0.050.

Reject H02 : β12 = 0?
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Multiple Tests
P−value Distribution

P−value
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Using p-value cutoff α = 0.05 ...

171 Discoveries (“productivity associated OTU’s”)

778 × 0.05 = 49 False Discoveries
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Main Error Rates

1 Famil y-Wise Error Rate:

FWER = Pr(#False Discoveries ≥ 1)

Bonferroni: p-value
?
≤ 0.05

778 → 54 discoveries

2 False Discovery Rate:

FDR = E
[

# False Discoveries
# Discoveries

]

BH procedure: p-value
?
≤ 0.005 → 82 discoveries

Benjamini and Hochberg (1995)
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Illustration of BH procedure

P−value Distribution
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F̂DR(0.001) =
778 × 0.001

54
= 0.014
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Illustration of BH procedure

P−value Distribution

p

F
re

qu
en

cy

0.000 0.005 0.010 0.015 0.020

0
10

20
30

40
50

60
70

F̂DR(0.002) =
778 × 0.002

64
= 0.024

J. Habiger Weighted Adaptive Multiple Decision Functions



Introduction
Preliminaries and Finite FDR Control

Asymptotic FDP control
Optimal Weights

Assessment
Concluding Remarks

Problem
Standard Solution
Towards More Robust Methods
Towards More Efficient Methods

Illustration of BH procedure

P−value Distribution
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Illustration of BH procedure

P−value Distribution
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82
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Properties of BH Procedure

Theorem (Benjamini and Hochberg; 1995)

If P-values from true null hypotheses are
1 independent
2 uniformly distributed

then the BH procedure has FDR ≤ a0α ≤ α

a0 = proportion of true null hypotheses
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FDR Areas

FDR Research Areas
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Uniform Distribution

P-values not uniformly distributed under null if
1 Model misspecified

Efron (2001, 2007); Pollard and van der Laan(2004)
Habiger and Peña (2011)

2 Data/test statistic discrete
Lancaster (1961); Pratt(1961)
Geyer and Meeden (2005); Kulinskaya and Lewin (2009)
Gutman and Hochberg (2007)
Habiger (2013)
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Dependence

P-values may not be independent under null
1 Positive Dependence

Benjamini and Yekuteuli (2001)
Guo, Li, and Sarkar (2013), Guo and Sarkar(2013)

2 Weak Dependence
Storey (2001), Genovese and Wasserman (2002), Storey, Taylor
and Siegmund (2004)

3 Arbitrary/Strong Dependence
Benjaminin and Yekuteuli (2001)
Efron (2012); Desai and Storey (2012); Fan, Han and Gu (2012)
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Exhausting the α

BH: FDR = a0α < α
1 Exact adaptive FDR control via â0

Storey, Taylor and Siegmund (2004); Benjamini, Krieger and
Yekuteli (2006); Gavrilov, Benjamini and Sarkar (2009); Liang and
Nettleton (2012)

2 Consistent estimation of a0
Sun and Cai (2007); Jin and Cai (2007); . . MANY more

3 Asymptotically Optimal Rejection Curve
Finner et. al (2009)
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Heterogeneity

Data not homogeneous - Example ancillary statistics
1 weighted BH type procedures

Genovese and Wasserman (2006); Roeder and Wasserman
(2009); Roquain and van de Wiel (2009); Peña, Habiger and Wu
(2011)

2 focus on group/cluster structure
Sun and Cai (2009); Hu, Zhao and Zhou (2010)
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P-value efficiency

local FDR for z−scores: lfdr(z) = pf0(z)
f (z)

Efron et. al (2001);Efron(2010); Sun and Cai (2007); Jin and Cai
(2007)
Rubin, Dudoit and van der Laan (2006); Habiger and Peña (2013)

P-value approach = Z-value approach if p-value
appropriately defined

Habiger (2012)
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Idea of this Paper

Weak Dependence + Weighted + Adaptive
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Finite FDR Control

Preliminaries and Finite FDR Control
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Data and Hypotheses

Data: Z = (Zm,m ∈ M) ∼ F for M = {1, 2, ...,M}
Example: Z ∼ MVN(µ,Σ)

Null hypotheses: H = (Hm,m ∈ M)
Example: Hm : µm = 0

True nulls: M0 = {m ∈ M : Hm true } ⊆ M

Number true nulls: M0 = |M0|
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Decision functions

Decision fxn: δm(Zm; tm) ∈ {0, 1} - tm a “threshold” (or size
or index)

Example 1: δm(Zm; tm) = I(Zm ≥ Φ̄−1(tm))

Example 2: p-value → δm(Pm(Zm); tm) = I(Pm(Zm) ≤ tm)

Assumptions

1 E [δm(Zm; tm)] = tm under Hm

2 tm 7→ E [δm(Zm; tm)] continuous and strictly increasing

Shorthand: δm(tm) a Bernoulli process

Multiple decision fxn: δ(t) = [δm(tm),m ∈ M]

t = (tm,m ∈ M) - “threshold vector”
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False Discovery Proportion/Rate

False Discovery Proportion (FDP):

FDP(t) =
V (t)

R(t) ∨ 1

False Discovery Rate (FDR):

FDR(t) = E [FDP(t)]

V (t) =
∑

m∈M0
δm(tm) number false discoveries

R(t) =
∑

m∈M δm(tm) number discoveries
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Weights and a single threshold

Goal: Choose t large as possible s.t. FDR(t) ≤ α

⇓

tm = t̄
(

tm
t̄

)

≡ twm

ւ ց

choose t choose w
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Procedure: Fixed weights

1 Choose threshold

tλα = sup{0 ≤ t ≤ λ : F̂DR
λ

(tw) ≤ α}

where

F̂DR
λ

(tw) =
M̂0(λw)t

R(tw) ∨ 1

2 Compute δ(tλαw)

Weighted adaptive multiple decision function (WAMDF)”

J. Habiger Weighted Adaptive Multiple Decision Functions
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Details

M̂0(λw) =
M − R(λw) + 1

1 − λ

Weighted version of Storey et. al (2004) estimator

Intuition for w = 1 and λ = 1/2:

If all alternative p-values near 0 then

M̂0 = {#p − values > 1/2} × 2

Should have λwm < 1
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FDR bound

Lemma (FDR bound)

For M0 ≥ 1 and under

(A1) (Zm,m ∈ M0) independent collection

(A2) λwm < 1 for every m,

FDR(tλαw) ≤ αw̄0
1 − λ

1 − λw̄0

w̄0 = M−1
0

∑

m∈M0
wm average null weight

Corollary: w = 1 ⇒ w̄0 = 1 ⇒ Theorem 3 - Storey et al (2004)
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FDR Control

Problem: w̄0 unobservable!

Theorem (FDR control)

Let w(M) = max{wm,m ∈ M} and define

α∗ = α
1

w(M)

1 − λw(M)

1 − λ
.

Then under (A1) and (A2), FDR(tλα∗w) ≤ α.

Generally have w̄0 ≤ 1 . . .
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Asymptotic results

Asymptotic FDP Control

(Weighted) adaptive vs. unadaptive vs. Oracle

“α-exhaustion”

Remark: Notation - w0,M , F̂DRM , ...
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Assumptions

Weak Dependence: for 0 ≤ t ≤ u,
(A3) R(twM)/M → G(t) a. s.
(A4) V (twM)/M → a0µ0t a. s.

w̄0,M → µ0 asymptotic mean null weight
M0
M → a0 asymptotic proportion true nulls

u = sup{t : twm ≤ 1}

FDR controllable:
(A5) t/G(t) is strictly increasing and continuous with

lim
t↓0

t
G(t)

= 0 and lim
t↑u

t
G(t)

=
u

G(u)
≤ 1,

Similar to Genovese and Wasserman (2006), Storey et. al(2004), ...
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FDR Estimators

Estimators + limits

Unadaptive F̂DR
0

M(twM) =
Mt

R(tw M )
→ t

G(t) ≡ F̂DR
0

∞(t)

Adaptive F̂DR
λ

M(twM) =
M̂0(λwM)t

R(tw M)
→ 1−G(λ)

1−λ
t

G(t) ≡ F̂DR
λ

∞(t)

Oracle FDPM(twM) =
V (twM )
R(tw M)

→ a0µ0t
G(t) ≡ FDP∞(t)

Lemma (Glivenko-Cantelli)
Under (A2) - (A5), convergence is uniform for each “estimator” a.s., i.e.

sup
0≤t≤u

|F̂DRM(tw)− F̂DR∞(t)| → 0 almost surely
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Thresholds

Example: tλα,M = sup{0 ≤ t ≤ u : F̂DR
λ

M(tw) ≤ α}

Threshold
Finite (M) Asymptotic (∞)
(random) (not random)

Unadaptive - F̂DR
0

t0
α,M t0

α,∞

Adaptive - F̂DR
λ

tλα,M tλα,∞

Oracle FDP tα,M tα,∞
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Threshold comparison

Theorem (Thresholds converge)

Consider

lim
M→∞

t0
α,M = t0

α,∞ ≤ lim
M→∞

tλα,M = tλα,∞ ≤ lim
M→∞

tα,M = tα,∞

Under (A2) - (A5),

all equalities + first inequality satisfied a.s.

last inequality satisfied a.s. if µ0 ≤ 1.

Thresholds constant

Adaptive threshold > unadaptive threshold
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FDP comparison

Theorem (FDPs converge)

lim
M→∞

FDPM(t
0
α,MwM) ≤ lim

M→∞
FDPM(t

λ
α,MwM) ≤ lim

M→∞
FDPM(tα,MwM) = α

Under (A2) - (A5),

first inequality and last equality satisfied a.s.

last inequality satisfied a.s. if µ0 ≤ 1

Important: FDP 6= FDR - Error control on 1 replication

Q: Does FDPM(tλα,MwM) → α?

J. Habiger Weighted Adaptive Multiple Decision Functions



Introduction
Preliminaries and Finite FDR Control

Asymptotic FDP control
Optimal Weights

Assessment
Concluding Remarks

Preliminary Definitions and Results
Adaptive vs. Unadaptive vs. Oracle
α-exhaustion

α-exhaustion idea

“Good procedures should be α-exhaustive” - Have FDRM → α under some
“least favorable distribution”

Finner et. al (2009); Roquain and Villers (2011) - AORC:

p(k) ≤ α
k

M − k(1 − α)

Least favorable dist under i.i.d. is “Dirac-Uniform (DU)”

E [δm(t)] =
{

t m ∈ M0

1 m ∈ M1

Step-up procedures fail
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α-exhaustion

Theorem (α-exhaustion)

If µ0 = 1, then under weak dependence (A3 - A4) and a DU distribution,
FDPM(tλα,MwM) → α almost surely, i.e. δ(tλα,MwM) is α-exhaustive.

Corollary (Adaptive BH is α-exhaustive)
The (unweighted) adaptive BH procedure step up procedure - Storey et. al
(2004)- is “α-exhaustive” under weak dependence (A3 - A4).

Extends Finner et. al (2009) theory to 1) weighted 2) adaptive 3) step-up
procedure under 4) weak dependence
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Question

Questions

1 α-exhaustion ⇒ “optimal”
2 How to choose w
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Optimal Weights

Optimal Weights

Mixture model
Optimal weights for fixed t
Optimal weights for approximation of tλα,∞
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Mixture Model

Model (Random effects model)

Let (Zm, θm, pm, γm), m ∈ M be i.i.d. random vectors with

F (zm|θm, γm) = (1 − θm)F0(zm) + θmF1(zm|γm)

and
F (zm|pm, γm) = (1 − pm)F0(zm) + pmF1(zm|γm).

θm ∈ {0, 1} with pm = Pr(θm = 1) ind. of γm

E [pm] = 1 − a0 for 0 < a0 < 1.

F0(·) “null distribution” and F1(·|γm) “alternative distribution”

Heterogeneity: effect size γm and prior probability pm
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Power function

For tm = twm,

πγm(tm) = E [δm(Zm; tm)|θm = 1, γm]

is the power function

(A6) tm 7→ πγm(tm) is concave and twice differentiable for
tm ∈ (0, 1) with limtm↑1 π

′
γm
(tm) = 0 and

limtm↓0 π
′
γm
(tm) = ∞ a.s.

Similar to Genovese and Wasserman (2006); Peña, Habiger, Wu (2011), ...
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Optimality goal

1 Assume t̄ = t fixed ⇔ (ex. Bonferroni t = α/M)

2 Goal: Maximize ETP / power

π(t, p, γ) ≡ E

[

∑

m∈M

θmδm(tm)
∣

∣

∣
γ, p

]

=
∑

m∈M

pmπγm (tm),

subject to t̄ = t .
3 Can always recover weights

tm = twm ⇒ wm =
tm
t
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Optimal fixed-t threshold/weights

Theorem (Optimal Fixed-t threshold)

Under (A6) and the random effects model, for any fixed t ∈ (0,1), the
maximum of π(t, p,γ) with respect to t subject to constraint t̄ = t exists, is
unique, and satisfies (a.s.)

π′
γm (tm) = k/pm

1 For any k can compute tm(k/pm, γm)

2 Find the k∗ satisfying constraint

3 Compute optimal fixed-t weights w∗
m = tm(k∗/pm,γm)

t
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Illustration: p1 = p2 = 1/2
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t = 0.01,0.05 ⇒ k∗ = 6.1,1.7

J. Habiger Weighted Adaptive Multiple Decision Functions



Introduction
Preliminaries and Finite FDR Control

Asymptotic FDP control
Optimal Weights

Assessment
Concluding Remarks

Model
Optimal Fixed-t Weights
Approximately Optimal Fixed-t Weights

Approximation Idea

Problem: tλα,M not fixed so previous theorem not applicable

Solution: Recall tλα,M → tλα,∞
Can approximate tλα,∞ “well” using p and γ (details
omitted)
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Notation

Asymptotically optimal fixed-t weights w∗
M (using tλα,∞)

Approximately optimal fixed-t weights ŵM (using
approximation tλα,∞)

Pertubed fixed-t weights w̃M (w̃m,M = Umŵm,M)
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FDP control

Theorem (FDP control)

Under the Random Effects Model and (A6), conditions
(A2) - (A5) are satisfied and µ0 ≤ 1. Hence, almost surely

lim
M→∞

FDPM(t0
α,Mw̃M) ≤ lim

M→∞
FDPM(tλα,Mw̃M) ≤ α

For large M
1 adaptive weighted procedure DOMINATES

unadpative weighted procedure and is valid even if
weights are misspecified
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α-exhaustion

Theorem (α-exhaustion)

Under model 1 and (A6), δ(tα,Mw̃M) is α-exhaustive if p1 = p2 = ... = pM = p

1 Many optimal weighting schemes can be motivated using random
effects model with p1 = p2 = ... = pM

Spjotvoll (1972), Genovese and Wasserman (2006); Storey(2007);
Peña, Habiger, Wu (2011)

2 If used with tλα,M → Optimally weighted + α-exhaustive
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Optimal Weights

Theorem (Asymptotically optimal weights)

Under Model 1 and (A6), δm(tλα,Mŵm) → δm(tλα,∞w∗
m) almost

surely for every m.

Approximately optimal weights are asymptotically
optimal
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Simulation setup

Data: Zm ∼ N(θmγm, 1)
Decision: δm(Zm; tm) = I(Zm ≥ Φ̄−1(tm))

Effect sizes: γm
i.i.d.
∼ Un(1,1),Un(1,3), or Un(1,5)

Procedures:

UU (1, t0
α,M ) unweighted + unadaptive - Benjamini and Hocbger (1995)

WU (w∗
M , t

0
α,M ) weighted + unadaptive - Genovese and Wasserman (2006);

Peña, Habiger, Wu (2011)

UA (1, tλα,M ) = unweighted + adaptive - Storey et. al (2004)

WA (w∗
M , t

λ
α,M ) weighted + adaptive - Habiger (201?)
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Some Heterogeneity

Simulation 1

γm = 1 γm
i .i .d .
∼ Un(1, 3) γm

i .i .d .
∼ Un(1, 5)

UU 0.007(0.025) 0.390(0.024) 0.707(0.025)
WU 0.007(0.025) 0.395(0.025) 0.729(0.025)
UA 0.009(0.030) 0.454(0.034) 0.753(0.039)
WA 0.009(0.030) 0.457(0.035) 0.778(0.039)

Average Power (FDR) for pm = 1/2

WA - Optimally Weighted + α-exhaustive
UA - α-exhaustive
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More Heterogeneity

Simulation 2

γm = 1 γm
i .i .d .
∼ Un(1, 3) γm

i .i .d .
∼ Un(1, 5)

UU 0.007(0.025) 0.390(0.025) 0.711(0.025)
WU 0.012(0.012) 0.431(0.015) 0.755(0.016)
UA 0.009(0.026) 0.457(0.035) 0.757(0.039)
WA 0.017(0.015) 0.504(0.021) 0.807(0.026)

Average Power (FDR) for pm
i.i.d
∼ Un(0,1)

WA Optimally weighted
UA - α-exhaustive
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Pertubed weights

Simulation 3

γm = 1 γm
i .i .d .
∼ Un(1, 3) γm

i .i .d .
∼ Un(1, 5)

UU 0.006(0.025) 0.391(0.026) 0.709(0.025)
WU 0.012(0.013) 0.394(0.016) 0.724(0.016)
UA 0.008(0.028) 0.458(0.036) 0.756(0.039)
WA 0.019(0.015) 0.457(0.022) 0.773(0.026)

Average Power (FDR) for pm
i.i.d
∼ Un(0,1) and perturbed weights

UA - α-exhaustive
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Summary of results

Optimality of weighted adaptive procedure
Heterogeneity and adaptive vs. Heterogeneity or adaptive

Robustness of weighted adaptive procedure
FDP (not FDR) control under weak dependence and noisy weights
Good power under noisy weights
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Near future work

OTU# Sufficient Stat Ancillary Stat weights
1 18.14 7 ?
2 19.13 14 ?
...

...
...

...
M = 778 161.05 87 ?

1 How can we estimate γms / pms ?
2 Different optimality goal: maximize

∑

m

∑

j(ŷmj − ȳm·)
2

s.t. 5% of “declared productivity-associated variability
is falsely declared variability”
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Near future work continued

1 Choice of λ?
Dynamic - Liang and Nettleton (2012)
Variance vs. bias vs. power

2 Estimation of µ0?
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General Future work

Optimally weighted
+

α - exhaustive
+

strong dependence
+

discrete data
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