
REVIEW FOR EXAM II

This exam covers sections 4.1-4.7 and 4.9-4.10 in the book. As before this re-
view is basically a checklist. For detailed examples and solutions you should
consult your class notes, the book, and the quiz solutions posted on the
course website.

BASIC FACTS ABOUT SECOND ORDER LINEAR EQUATIONS

1. Existence and uniqueness.

This chapter is concerned with equations of the following form:

y′′ + p(t)y′ + q(t)y = g(t)

An initial value problem consists of this equation together with the two
requirements y(t0) = y0 and y′(t0) = y′0, where t0, y0, and y′0 are given
numbers. A solution to the initial value problem is a function y = φ(t)
which satisfies the equation and the two initial conditions. As before
we can ask whether a solution exists, whether it is unique, and for what
values of t it is valid.

Suppose t0 is contained in an open interval (a, b) and that p(t), q(t),
and g(t) are continuous for all t ∈ (a, b). Then a solution exists, it is
unique, and it is valid for all t ∈ (a, b).

A typical problem concerning existence and uniqueness might give you
t0, y0, y

′
0 and an equation in the form

a2(t)y
′′ + a1(t)y

′ + a0(t)y = b(t)

and ask you for the largest interval on which the initial value problem
has a unique solution. To find this out divide both sides by a2(t) to
get an equation in the standard form given above. This will tell you
what p(t), q(t), and g(t) are. Locate the points at which they are
discontinuous. These will chop the real number line into pieces which
will be open intervals. Find the interval which contains t0.
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2. Homogeneous equations.

(a) Fundamental solutions.

Our equation is homogeneous if its right hand side is zero for all
t, so it has the following form:

y′′ + p(t)y′ + q(t)y = 0

Consider an interval (a, b) on which p(t) and q(t) are continuous.
Let y1 and y2 be solutions of the equation. A basic property of
solutions of a homogeneous equation is the principle of superpo-
sition, which says that for any constants c1 and c2 the function
c1y1 + c2y2 is also a solution of the homogeneous equation.

Two solutions y1 and y2 of our equation constitute a fundamental
set of solutions if every solution of the equation on (a, b) can be
written in the form c1y1 + c2y2 for some choice of constants c1 and
c2.

Define the Wronskian of two functions f and g at t1 to be the
quantity

W (f, g)(t1) = det

[
f(t1) g(t1)
f ′(t1) g′(t1)

]
=

∣∣∣∣∣ f(t1) g(t1)
f ′(t1) g′(t1)

∣∣∣∣∣ =

f(t1)g
′(t1)− g(t1)f

′(t1).

The basic result about fundamental solutions is that given two
solutions y1 and y2 of the homogeneous equation, the following
statements are equivalent:

(i) y1 and y2 constitute a fundamental set of solutions on (a, b).

(ii) W (y1, y2)(t1) 6= 0 for some point t1 in (a, b).

(iii) W (y1, y2)(t) 6= 0 for every point t in (a, b).
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One ingredient in this result is Abel’s Theorem, which says that

W (y1, y2)(t) = c exp
(
−
∫
p(t) dt

)
.

Since the exponential function is never zero, W will never be zero
unless the constant c is zero, in which case W is zero everywhere.
So, if you are given two functions whose Wronskian is sometimes
zero and sometimes non-zero on (a, b) you know that these two
functions cannot be solutions of a second order homogeneous lin-
ear differential equation on (a, b).

(b) Initial value problems.

If you have a fundamental set {y1, y2} of solutions of a homoge-
neous equation and an initial value problem y(t0) = y0, y

′(t0) = y′0,
then y = c1y1 + c2y2 and y′ = c1y

′
1 + c2y

′
2. Plugging in t = t0,

y = y0, and y′ = y′0 gives a system of two equations in the two
unknowns c1 and c2. Solving for c1 and c2 gives you the solution
y = c1y1 + c2y2 of the initital value problem.

3. Non-homogeneous equations.

(a) General solutions.

If the right hand side of our equation

y′′ + p(t)y′ + q(t)y = g(t)

is non-zero for at least one point in (a, b), then our equation
is non-homogeneous. Suppose yp(t) is one solution of our non-
homogeneous equation. (yp(t) is called a particular solution.) If
zp(t) is another solution of our non-homogeneous equation, then
zp(t)− yp(t) will be a solution of the homogeneous equation that
we get by replacing g(t) by zero.

y′′ + p(t)y′ + q(t)y = 0
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Suppose y1 and y2 constitute a fundamental set of solutions for this
homogeneous equation, so it has general solution yh = c1y1 + c2y2.
So zp − yp = yh = c1y1 + c2y2, and hence zp = c1y1 + c2y2 + yp.
Therefore the non-homogeneous equation has general solution

y = c1y1 + c2y2 + yp.

Note that there is no constant multiplying the yp.

(b) Initial value problems.

Given an initial value problem for a non-homogeneous equation
with general solution y = c1y1 + c2y2 + yp, compute y′ = c1y

′
1 +

c2y
′
2 + y′p. Plug in t = t0, y = y0, and y′ = y′0, and solve for c1 and

c2.

FINDING SOLUTIONS TO HOMOGENEOUS EQUATIONS

1. Reduction of order.

Suppose you know one non-zero solution y1 of the homogeneous equa-
tion y′′ + py′ + qy = 0. Then you can find a second solution y2 so that
{y1, y2} is a fundamental set of solutions.

Set y2 = vy1, where v is an unknown function of t which we will de-
termine. Compute the derivatives y′2 and y′′2 . These will be formulas
involving the unknown functions v, v′, and v′′ as well as known func-
tions that come from differentiating the known function y1. Plug these
into your differential equation and simplify. You will get an equation

v′′y1 + (2y′1 + py1)v
′ = 0.

Don’t bother memorizing this formula. You will automatically get an
equation of the form F (t)v′′ +G(t)v′ = 0, which you can rewrite as

v′′ + h(t)v′ = 0.

Let u = v′. Then u′ = v′′, and we get a first order equation

u′ + h(t)u = 0
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which is linear and is also separable. Use the methods developed pre-
viously for solving such equations to find the general solution for u.
This will contain a constant c. Then integrate u to obtain v; you don’t
need a +C when you do this integral. Multiply v times y1 to obtain y2.
This will still contain your constant c. Set c equal to some convenient
value, but make sure that doing so does not give you a function which
is a constant multiple of y1. If you have any terms in your y2 which are
constant multiples of y1 you can discard them.

2. Constant coefficient homogeneous equations.

Consider equations of the form ay′′+ by′+ cy = 0, where a, b, and c are
constants. By plugging y = ert into this equation we get (ar2 + br2 +
c)ert = 0. Dividing by ert gives the characteristic equation

ar2 + br + c = 0.

There are three cases depending on the nature of the roots of this
quadratic equation.

(a) Two real roots r1 6= r2.

Then y1 = er1t and y2 = er2t constitute a fundamental set of solu-
tions.

(b) One repeated real root r.

Then y1 = ert and y2 = tert constitute a fundamental set of solu-
tions.
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(c) Two non-real roots r1 = α + β i, r2 = α− β i.

Then y1 = eαt cos(βt) and y2 = eαt sin(βt) constitute a fundamen-
tal set of solutions.

3. Cauchy-Euler equations

These are equations of the form at2y′′ + bty′ + cy = 0.

First note that THESE ARE NOT CONSTANT COEFFICIENT EQUA-
TIONS! They have DIFFERENT SOLUTIONS from constant coeffi-
cient equations!

The philosophy behind solving these is to try a solution of the form
y = tr, NOT y = ert! Plugging y = tr into the equation and simplify-
ing shows that r must satisfy the following characteristic equation.

ar2 + (b− a)r + c = 0

Note that the coefficient of r is b− a, NOT b.

There will be three cases which depend on whether there are two real
roots, one real root, or no real root. There will also be differences in the
formulas depending on whether t > 0 or t < 0. (The point t = 0 is a sin-
gularity at which bad things can happen; we will not be considering it.)

First consider the case t > 0.

If the characteristic equation has two distinct real roots r1 and r2, then
the solution is

y = c1t
r1 + c2t

r2 .
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If the characteristic equation has only one real root r, then the solution
is

y = c1t
r + c2t

r ln t.

If the characteristic equation has nonreal roots α±βi, then the solution
is

y = c1t
α cos(β ln t) + c2t

α sin(β ln t).

For the case in which t < 0 replace t by−t in each of the formulas above.

FINDING SOLUTIONS TO NON-HOMOGENEOUS EQUATIONS

1. Undetermined coefficients.

Suppose our equation has the form

ay′′ + by′ + cy = g(t)

where a, b, and c are constants. The general idea of undetermined
coefficients is to guess a solution yp that “looks like” g(t). You will
make an initial guess according to the rules given below. This guess
may have to be modified later.

We first introduce some notation. We let

p(t) = a0t
n + a1t

n−1 + · · ·+ an−1t+ an,

P (t) = A0t
n + A1t

n−1 + · · ·+ An−1t+ An,

q(t) = b0t
n + b1t

n−1 + · · ·+ bn−1t+ bn, and

7



Q(t) = B0t
n +B1t

n−1 + · · ·+Bn−1t+Bn.

If g(t) = p(t), then the initial guess is yp(t) = P (t).

If g(t) = meαt, then the initial guess is yp(t) = Aeαt.

If g(t) = k cos βt, ` sin βt, or k cos βt+ ` sin βt, then the initial guess is
yp(t) = A cos βt+B sin βt.

If g(t) = p(t)eαt, then the initial guess is yp(t) = P (t)eαt.

If g(t) = p(t) cos βt, q(t) sin βt, or p(t) cos βt+ q(t) sin βt, then the ini-
tial guess is yp(t) = P (t) cos βt+Q(t) sin βt.

If g(t) = keαt cos βt, `eαt sin βt, or eαt(k cos βt + ` sin βt), then the ini-
tial guess is yp(t) = eαt(A cos βt+B sin βt).

If g(t) = eαtp(t) cos βt, eαtq(t)βt, or eαt(p(t) cos βt + q(t) sin βt), then
the initial guess is yp(t) = eαt(P (t) cos βt+Q(t) sin βt).

In practice, instead of using subscipted coefficients like A0, A1, and so
on, one can just start using letters of the alphabet A, B, and so forth.

Once you make an initial guess, examine it to see whether any of its
terms is a solution of the corresponding homogeneous equation. (Re-
member that a term is one of the things you add to get the guess. For
example if your guess is (At + B)et sin(t) + (Ct + D)et cos(t) then its
terms are Atet sin(t), Bet sin(t), Ctet cos(t), and Det cos(t); note that
et, cos(t), and sin(t) are NOT terms of the guess.) If AT LEAST ONE
of the terms is a solution of the homogeneous equation, then multiply
the ENTIRE guess by t. If you still have some term being a solution of
the homogeneous equation, then multiply the entire new guess again by
t. Continue until no term is a solution of the homogeneous equation,
but DO NOT go any further than this; STOP as soon as you have no
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term which is a solution of the homogeneous equation.

Take the guess yp that you now have, compute y′p and y′′p , plug these into
your non-homogeneous equation, simplify, and collect terms. Compare
the expression you get on the left with the function g(t) on the right.
The coefficients of the various terms on the left must equal the coeffi-
cients of the terms on the right. This gives you a system of equations
in the coefficients of your guess. You then solve this system to find yp.

If you have an equation of the form ay′′ + by′ + cy = g1(t) + g2(t),
where g1(t) and g2(t) are not the same sort of functions (e.g. cos 2t
and cos 3t would be an example, but cos 2t and sin 2t would not) then
you can break the problem into two pieces ay′′ + by′ + cy = g1(t) and
ay′′+ by′+ cy = g2(t), find solutions yp1 and yp2 to each piece, and then
let yp = yp1 + yp2 . A similar remark applies to a sum of more than two
functions.

2. Variation of parameters.

Consider the equation

y′′ + p(t)y′ + q(t)y = g(t).

Suppose we happen to know a fundamental set of solutions {y1, y2} of
the corresponding homogeneous equation. Then we can find a solution
yp of the non-homogeneous equation as follows.

Compute the Wronskian W = y1y
′
2 − y2y′1 of y1 and y2.

Set u′1 = −gy2
W

.

Set u′2 =
gy1
W

.

Integrate to get u1 =
∫
u′1 dt.
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Integrate to get u2 =
∫
u′2 dt.

You do NOT need a +C in these integrals.

Compute yp = u1y1 + u2y2.

APPLICATIONS

1. Mechanical vibrations.

A mechanical system consisting of a mass m attached to a spring with
spring constant k, a dashpot with damping coefficient b, and an external
force F (t) is governed by the equation

my′′ + by′ + ky = F (t)

where y is the displacement of the mass from its equilibrium position
(the point where it is at rest).

You should know that weight and mass are related by W = mg . In the

metric MKS system distance is measured in meters, mass in kilograms,
force and weight in newtons (kg-m/sec2), and time in seconds, with
g = 9.8 m/sec2. In the metric CGS system distance is measured in cen-
timeters (0.01 meter), mass in grams (0.001 kilogram), force and weight
in dynes (g-cm/sec2), and time in seconds, with g = 980 cm/sec2. In
the English system distance is measured in feet (1 ft = 12 inches), mass
in slugs, force and weight in pounds (1 lb = 1 slug-ft/sec2), and time
in seconds, with g = 32 ft/sec2.

If it takes a force of Fs to stretch a spring by distance L from its un-
stretched length then Fs = kL , where k > 0.

If the dashpot exerts a force of Fd for a velocity of v, then Fv = bv .
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Case 1: Unforced vibrations.

Suppose F (t) = 0. Then we have my′′+by′+ky = 0. This is a constant
coefficient equation which we solve in the standard way.

If b = 0, the system is undamped, and the general solution is u =

c1 cosω0t+ c2 sinω0t, where ω0 =
√
k/m . YOU MUST KNOW THIS

FORMULA. We can rewrite this in the form R cos(ω0t − δ), where

R =
√
c21 + c22, cos δ = c1/R, and sin δ = c2/R. Thus we get a sinu-

soidal oscillation with constant amplitude R. We call ω0 the natural
frequency of the system. The period T is the time between successive
oscillations. We have ω0T = 2π.

If b 6= 0, the system is damped. The general solution depends on the
relative values of m, b, and k as follows.

If b2 − 4mk > 0, then the characteristic equation has two real roots r1
and r2 which are both negative. Then the general solution c1e

r1t+c2e
r2t

goes to zero without any oscillations as t → ∞. We say the system is
overdamped.

If b2 − 4mk = 0, then the characteristic equation has one real root r;
it is negative. The general solution c1e

rt + c2te
rt goes to zero without

any oscillations as t→∞. We say the system is critically damped.

If b2−4mk < 0, then the characteristic equation has two non-real roots
α± β i; α is negative. The general solution c1e

αt cos(βt) + c2e
αt sin(βt)

goes to zero with oscillations of decreasing amplitude as t → ∞. We
say the system is underdamped. We call β the quasi-frequency. The
quasi-period Td is related to it by βTd = 2π.

YOU MUST BE ABLE TO DETERMINE THE TYPE OF DAMP-
ING A SYSTEM HAS.
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Case 2: Forced vibrations.

Now suppose that F (t) is not identically zero. We can apply unde-
termined coefficients or variation of parameters to find a particular
solution yp to our non-homogeneous equation and then get its general
solution as y = c1y1 + c2y2 + yp, where y1 and y2 are fundamental so-
lutions to the homogeneous equation.

The most important case is when F (t) is a sinusoidal function like
F0 cos γt or F0 sin γt. We consider for simplicity the cosine case.

In what follows you should not try to memorize the specific formulas
for the solutions. In any particular problem you would just solve these
equations using the methods developed earlier. If you need any of these
formulas they will be given to you. However, you should understand
what the general behavior of the solutions will be and when these var-
ious types of behavior occur. For example, YOU SHOULD BE ABLE
TO DETERMINE WHEN RESONANCE OCCURS.

First consider the undamped case b = 0.

Recall that ω0 =
√
k/m. If ω0 6= γ, then our general solution is

c1 cosω0t+ c2 sinω0t+
F0

(k −mγ2)
cos γt.

In general this will have a very complicated graph. In the special case
where the initial position and velocity are both zero it can be rewritten
as a product of two sine functions, so that it exhibits the phenomenon
of beats, a rapid oscillation with slowly varying amplitude.

If ω0 = γ, then our general solution is

c1 cosω0t+ c2 sinω0t+
F0

2mω0

t sinω0t.
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The third term makes the solution blow up as t→∞. This is the phe-
nomenon of resonance. SO RESONANCE OCCURS WHEN ω0 = γ .

Next consider the damped case b 6= 0. We will still let ω0 =
√
k/m

The general solution is y = yh + yp, where yh is the solution to the
corresponding homogeneous equation. Recall that yh → 0 as t → ∞.
For this reason yh is called the transient solution. So for large values
of t we have that y is approximately equal to yp. So yp is called the
steady state solution. It is given by

yp =
F0√

(k −mγ2)2 + (bγ)2
sin(γt+ θ)

where tan θ = (k −mγ2)/(bγ).

The quantity M(γ) =
1√

(k −mγ2)2 + (bγ)2
is called the frequency re-

sponse; it is a measure of how big the amplitude of yp is compared to
the amplitude F0 of the forcing function F (t).

Note that if you vary the natural frequency ω0 or vary the forcing fre-
quency γ, then the amplitude of yp will vary.

If γ is fixed and ω0 is varied, then yp will have a maximum amplitude
when ω0 = γ.

If ω0 is fixed and γ is varied, then yp will have a maximum amplitude

when γ =

√
ω2
0 −

b2

2m2
.
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2. Electrical vibrations.

Consider a simple series circuit consisting of an inductor with induc-
tance L measured in henrys, a resistor with resistance R measured in
ohms, a capacitor with capacitance C measured in farads, and an ex-
ternal applied voltage E(t) measured in volts. Let Q be the charge on
the capacitor measured in coulombs. The current flowing around the
circuit will be I = Q′ measured in amperes. Then the equation for Q
will be

LQ′′ +RQ′ +
1

C
Q = E(t).

This is mathematically the same as the mechanical system described
above, with the inductor behaving like a mass, the resistor like a dash-
pot, the capacitor like a spring (but with constant 1/C, not C!), and
the external voltage like an external force. So all the above discussion
goes through in an analogous fashion. You should be able to set up the
equation, find the natural frequency ω0, be able to decide between over,
under, and critical damping, find the resonant frequency, etc. One little
difference is that sometimes a problem will ask for the current instead
of the charge; this is easy to handle since I = Q′.
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