
REVIEW FOR EXAM I

This exam covers sections 1.1-1.4, 2.1-2.4, 3.1-3.2, and 3.4-3.5 in the book.
This review is basically a checklist of things with which you should be fa-
miliar. As such it does not cover the material in detail. For the details you
should consult your class notes, the book, and the quiz solutions posted on
the course website.

TERMINOLOGY

An ordinary differential equation is an equation involving an independent
variable, for example x, a dependent variable, for example y, and some deriva-
tives of y with respect to x. In what follows we may sometimes use t as the
independent variable and x as the dependent variable. The mathematical
ideas are the same regardless of the notation.

A solution of the differential equation is a function g such that the equation
is true when we set y = g(x). Ideally you would like to have a formula for the
function g(x); this is called an explicit solution. Sometimes we cannot find
such a formula but may be able to find an equation of the form G(x, y) = C
which relates x and y (and does not have any derivatives in it); this is called
an implicit solution. Sometimes it may be difficult or impossible to do this.
It then may be possible to obtain qualitative information about the behavior
of the solutions or to get a table giving a numerical approximation to the
solution for certain values of x.

The order of the equation is the order of the highest derivative appearing in
the equation. Thus an nth order equation can be written in the form

F (x, y, y′, y′′, . . . , y(n)) = 0.

(The notation y(n) refers to the nth derivative
dny

dxn
.)

The equation is linear if it can be written in the form

an(x)y(n) + an−1(x)y(n−1) + · · ·+ a1(x)y′ + a0(x)y = b(x).

We will always assume that we can solve for y(n) so that our equation can be
written in the form

y(n) = f(x, y, . . . , y(n−1)).

On this exam we will be primarily concerned with first order equations. They
have the form

y′ = f(x, y).
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If f does not depend on y, so y′ = f(x), then the solution is easy to find;

just integrate: y =
∫
f(x) dx+ C.

If f does not depend on x, so y′ = f(y), then it is called an autonomous
equation. These are examples of a larger family of equations called separable
equations, the solution of which we will discuss later. It is also possible to
get qualitative information about the solutions, another topic to be discussed
later.

If a first order equation is linear it can be written in the form

y′ + P (x)y = Q(x)

and can be solved in a straightforward manner we will review shortly.

Usually a first order equation, whether linear or non-linear, will have many
solutions. If there is a single formula involving an unknown constant C such
that every solution can be obtained by setting C equal to a number, then this
formula is called a general solution. Some equations do not have a general
solution; there will be “extra” solutions which do not arise from a general
formula; these are called singular solutions.

Sometimes you are interested in finding a solution which has a particu-
lar value of y at a particular value of x. This is an initial value problem
y(x0) = y0. If you have a formula, explicit or implicit, for the solution which
involves a constant C, then you set x = x0 and y = y0 in it and solve for
the constant C. Sometimes this is not enough to determine the solution;
you may have to choose the sign on a square root, or the solution of the
initial value problem may be a singular solution which does not follow from
a general formula.

ANALYTIC METHODS

In this section we discuss methods for attempting to find formulas for the
solutions of various types of first order equations. If you are given an equa-
tion you should be able to recognize what type of equation it is. Sometimes
you may need to rewrite it in order to recognize its form. You should also
be aware that a given equation may belong to several different types; you
should be able to list them all.
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1. Linear equations

These equations have the form y′ + P (x)y = Q(x). Here is the proce-
dure for solving them.

Compute the integrating factor µ(x) = exp(
∫
P (x) dx). You do NOT

need to tack a +C onto the integral in this expression. You should
memorize this formula. Then proceed as follows.

µ(x)(y′ + P (x)y) = µ(x)Q(x)

(µ(x)y)′ = µ(x)Q(x)

µ(x)y =
∫
µ(x)Q(x) dx+ C

y =

∫
µ(x)g(x) dx+ C

µ(x)

Remember that you will be working with specific functions µ(x) and
Q(x), so your work will not look this abstract or complicated. You
should not memorize this last formula; you should learn the procedure
being used.

Note that for any linear equation you can get a general explicit solu-
tion, so if you want to solve an initial value problem y(x0) = y0 you
can just set x = x0 and y = y0 and solve for C.

2. Separable equations

Recall that y′ =
dy

dx
, so our equation has the form

dy

dx
= f(x, y). The

equation is separable if it can be rewritten in the form

h(y) dy = g(x) dx.

In this case you integrate both sides, recognizing that the integrals may
differ by a constant.
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∫
h(y) dy =

∫
g(x) dx+ C

This gives you an implicit solution of the form

G(y) = H(x) + C.

If possible try to solve this for y to get an explicit solution.

If you have an initial value problem set x = x0 and y = y0 in this
equation to find C.

Warning: Sometimes these equations have “singular” solutions. This
may happen if in rewriting the equation you have the possibility of
dividing by zero when you divide both sides by some function of y.
Examine your divisor to see for which values of y it is 0. Then check
to see if any of these constant values of y gives you a solution to the
original differential equation.

3. Exact equations

Suppose you can rewrite an equation in the form

M(x, y) +N(x, y)
dy

dx
= 0.

This equation is exact if there is a function F (x, y) such that
∂F

∂x
= M

and
∂F

∂y
= N . In this case the equation has the implicit solution

F (x, y) = C.

If the equation is exact, then we must have
∂M

∂y
=
∂N

∂x
. So, if

∂M

∂y
6= ∂N

∂x
,

then the equation is NOT exact.

It turns out that if
∂M

∂y
=
∂N

∂x
then the equation may or may not be

exact. However, if the region in the x-y plane in which M , N ,
∂M

∂y
,

and
∂N

∂x
are all continuous has no “holes” in it, then the equation is

exact. (The x-y plane with the origin removed has an obvious “hole”
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in it. The set of points (x, y) with y > 0 does not have any “holes” in it.)

If the equation is exact, then here is the procedure for solving it. Re-
member that in any specific problem you will have specific functions,
and so your work will not look as abstract or complicated as what fol-
lows.

Set
∂F

∂x
= M.

Integrate with respect to x to get F (x, y) =
∫
M dx+ g(y) = Q(x, y) + g(y).

Here g(y) is an as yet unknown function of y; Q(x, y) is the specific
function you get by integrating M(x, y) with respect to x.

Take the partial derivative of F with respect to y to get
∂F

∂y
=
∂Q

∂y
+ g′(y).

Set
∂F

∂y
= N to get

∂Q

∂y
+ g′(y) = N .

Solve this for g′(y) = N(x, y)− ∂Q

∂y
.

If the equation is exact and you have done everything correctly so far
this expression, when simplified, will not have any x’s in it. It will
be some function of y alone, so we have g′(y) = p(y). If you do have
any x’s here, stop and check your work. Something is wrong. Do not
continue until you correct the mistake.

Find h(y) =
∫
p(y) dy. You will not need a “+C” here.

Write out F (x, y) = Q(x, y) + g(y).

Get your implicit solution by setting F (x, y) = Q(x, y) + g(y) = C.

If possible try to find an explicit solution. If you have an initial value
problem try to find the C.

NUMERICAL METHODS

Suppose we are given an initial value problem

y′ = f(x, y), y(x0) = y0
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and we want to approximate the value of y(x) for certain values of x > x0.
We might want to do this if no other method of solution is available to us
or if those methods are too cumbersome or if we really just need the values
of the solution at these specific numbers. There are many methods for doing
this. We will limit our attention to Euler’s method. There are other methods
that are faster and more accurate, but they are a good bit more complicated
to understand and to implement.

Suppose we have points x0 < x1 < x2 < · · ·. We will restrict to the case in
which the points are evenly spaced, so xn+1 − xn = h, a constant. Note that
this implies that xn+1 = xn + h. Thus x1 = x0 + h, x2 = x1 + h = x0 + 2h,
x3 = x2 + h = x0 + 3h, etc. So in general we have xn = x0 + nh.

Euler’s method uses the tangent line to approximate the graph of the func-
tion. This gives the recursive formula

yn+1 = yn + f(xn, yn)h.

It may be convenient to use the shorthand notation y′n for the number
f(xn, yn). In this case the recursive formula would be

yn+1 = yn + y′nh.

Thus you start with the known values of x0 and y0, compute y′0 = f(x0, y0),
then compute y′0h, and then compute y1 = y0+y′0h. This is the first iteration
of the process. Next you repeat these steps starting with x1 and y1. You
compute y′1 = f(x1, y1), then y′1h, then y2 = y1 + y′1h. This is the second
iteration of the process. You continue in this fashion until you have yn cal-
culated for all the given tn.

The best way to organize this is by means of a table in which you have
columns headed by n, xn, yn, y′n, y′nh, and yn+1.

You should know how to set the problem up. If you want y(a) = y0, then
this means that x0 = a. If the problem asks for an approximation ym to y(b),
where b > a, this means that xm = b. If you are given the value of m this
will tell you that h = (b−a)/m. If, instead, you are given the value of h this
will tell that m = (b−a)/h (assuming this number is an integer). Remember
that the index n we are using to count things begins at 0, not at 1 or at a,
and it ends at m, not b. You should also know when to stop. If, for example,
m = 2 give x2 = b, then you should stop with y2; this is your approximation
to y(b); don’t compute y3, y4, etc.

When using your calculator you should NOT round off between computa-
tions. This can cause serious error. You can avoid rounding off by storing
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each new yn value in your calculator and then recalling it when you compute
f(xn, yn) and yn+1. Then store yn+1 and continue to the next iteration.

QUALITATIVE METHODS

Sometimes you can get a good deal of information about the general behav-
ior of the solutions of an equation without actually solving that equation.
In fact sometimes even if you know a formula for the solution it may not be
easy to deduce this information from the formula. Instead we look at the
function f(x, y) on the right hand side of the equation y′ = f(x, y).

1. Direction fields

f(x, y) tells you the slope of the tangent line to the graph of a solution
which passes through the point (x, y). By taking a grid of points (x, y)
in the x-y plane and drawing a short line segment with slope f(x, y)
at each point of the grid we get a general qualitative picture of what
the solutions look like, in particular their behavior as x goes to ±∞;
sometimes solutions will go to ±∞, sometimes they will approach a
constant y value, sometimes they may approach a straight line or a
curve.

Here are some important rules to follow:

Suppose that you are told what grid to use. For example, you might
be told to use the points (x, y) where x and y are integers between −2
and 2. There are exactly five possible values for x and five possible
values for y, so you get exactly twenty-five specific points in your grid.
You should make a table of values for f(x, y) at these points. Do not
omit any of these points. Do not add any other points. You must eval-
uate f(x, y) and draw the line segments for precisely the values you are
given. Draw the line segments so that the center of the line segment
is exactly on the point (x, y); do NOT draw it with an endpoint of the
line segment on the point (x, y).

One technique that helps you find direction fields is the method of iso-
clines. For a given constant c the isocline corresponding to c is the set
of all points (x, y) at which f(x, y) = c. At every one of these points
the tangent line segment has the slope c.

Note also that you might be given a problem where you are given a
picture of a direction field and are asked questions about the behavior
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of the solutions as x→ ±∞.

2. Autonomous equations

The equation y′ = f(x, y) is autonomous if f(x, y) does not depend
on x, that is if the equation has the form y′ = f(y). Autonomous
equations are separable and so in principle one can obtain at least an
implicit solution analytically. It turns out that without doing this one
can get a good bit of qualitative information, as follows.

If αi is a number for which f(αi) = 0 then αi is called a critical point.
For each critical point αi the constant function y = g(x) = αi is a
solution of the equation since y′ = α′i = 0 = f(αi) = f(y). Such a
solution is called an equilibrium solution of the equation. You can find
all the critical points, and from that all the equilibrium solutions, by
finding all the solutions of f(y) = 0.

Assuming that f(y) is continuous, it can change sign only at the critical
points. Thus you can determine the sign of f(y) and hence the sign of
the slope y′ by evaluating f(y) at a point in each of the intervals into
which the critical points chop the y axis. This will tell you whether the
solutions between the equilibrium solutions are increasing or decreas-
ing.

An equilibrium solution is stable if the solutions immediately above
and below it approach the equilibrium solution as x → ∞. This will
happen if solutions immediately above are decreasing and those imme-
diately below are increasing.

An equilibrium solution is unstable if the solutions immediately above
and below it move away from the equilibrium solution as x→∞. This
will happen if solutions immediately above are increasing and those
immediately below are decreasing.

An equilibrium solution is semistable if the solutions immediately on
one side approach the equilibrium solution and those immediately on
the other side move away from the equilibrium solution as x → ∞.
This will happen if solutions on both sides are increasing or solutions
on both sides are decreasing.
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3. Existence and uniqueness

Given an initial value problem y′ = f(x, y), y(x0) = y0 one can ask
three questions:

(1) Does a solution y = g(x) exist?

(2) Is the solution unique, i.e. is there only one solution?

(3) For what values of x does the solution exist?

The answers to these questions may take different forms depending on
whether the equation is linear or non-linear.

For a linear equation y′ + P (x)y = Q(x), y(x0) = y0

(1) A solution will exist for those x0 such that both P and Q are con-
tinuous at x0. (It is customary to express the set of such x0 as unions
of open intervals, so we might have an answer like (0, 1)∪(2,∞), which
could also be written as 0 < x < 1 or x > 2. Note that even if P and
Q were continuous from the right at 2 we would still exclude 2 from
our interval.)

(2) The solution in (1) is unique.

(3) If both P and Q are continuous in the interval a < x < b, where
a < x0 < b, then g(x) exists for all x in the interval.

Note that if you are given a specific IVP, say y(9) = 8, and are asked
to find the largest open interval on which the solution to this IVP ex-
ists, then you will choose the largest interval α < x < β such that (1)
P (x) and Q(x) are continuous on this interval and (2) x0 = 9 is in this
interval. Ignore all the other intervals which do NOT contain x0 = 9.

If we have an equation y′ = f(x, y), y(x0) = y0 which is not necessarily
linear then

(1) A solution will exist for those (x0, y0) at which f is continuous.

(2) The solution in (1) is unique if
∂f

∂y
is continuous at (x0, y0).
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(3) There will be some number h > 0 such that a solution exists for
x0 − h < x < x0 + h.

(Note that when we talk about the region where f or
∂f

∂y
is contin-

uous we are talking about an “open set” where these functions are
continuous; this means that there is a little open rectangle a < x < b,
c < y < d such that these functions are continuous in the rectangle and
a < x0 < b, c < y0 < d.)

APPLICATIONS

There are many different applications of differential equations to physics,
chemistry, engineering, finance, population dynamics, and other areas, so it
is possible only to give some general advice here on how to proceed.

First, read the problem very carefully. Then read it again. And again. Be
sure to pay close attention to what the words mean and how they are used.
Do not ignore things the problem says. Do not read into the problem things
that the problem does not say.

Identify the independent variable. Is it time? position? velocity? something
else?

Identify the dependent variable. Is it position? velocity? temperature?
mass? money? population? something else?

In what units are each of these variables being measured? seconds? feet?
kilometers? degrees Celsius? grams? pounds? volts? people? something
else?

What basic law or principle governs the problem? Newton’s second law of
motion? Newton’s law of cooling? Malthus’ law of population growth? the
logistic law of population growth? Ohm’s law of resistance? common sense?
something else? Often a careful reading of the problem will reveal what the
law or principle is.

Express the law or principle as a differential equation involving the two vari-
ables. Somewhere you should have the derivative of the dependent variable
with respect to the independent variable. This should be expressed in terms
of the two variables and perhaps certain constants that you deduce from the
statement of the problem.

Make sure that your units match up. You should not have grams/liter equal-
ing liters/minute, for example. Thinking through how the units cancel and
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match up is often a good guide to what the equation ought to be.

Once you get the differential equation read the problem again to see what it
wants you to do with it. Should you just write it down and stop? Should
you solve it? Should you find values for the variables or constants such that
certain conditions are satisfied?
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