

::

Preview Find Reorder Set points Check all that apply to the differential equation $rac{d^2y}{dx^2}+y=0$ 1 + Add content -A. ODE Differential EBudatto Ens Fall ß <u>2022</u> C. first order D. second order **^** <u>Home</u> **E.** third order • Instructor Courses <u>3</u> G. a candidate for integrating factors Course Catalog **H** separable E Problem Repositony geneous 2 □ J. autonomous ? Help Center : = Check all that apply to the differential equation $\frac{d^3y}{dx^3} + 5\left(\frac{dy}{dx}\right)^3 - 4y = e^x$ 2 A. ODE 🗆 B. PDE C. first order D. second order **E.** third order 🗌 F. linear **G**. a candidate for integrating factors **H**. separable □ I. homogeneous □ J. autonomous

: =

3

Check all that apply to the differential equation P''+2P'=0

A. ODE

🗆 B. PDE

 \Box C. first order

 \Box **D.** second order

 \Box **E.** third order

🗆 F. linear

 \square G. a candidate for integrating factors

H. separable

□ I. homogeneous

□ J. autonomous

: =

	8 (1 point) Use the "mixed partials" check to see if the following differential equation is exact. If it is exact find a function $F(x,y)$ whose differential, $dF(x,y)$ is the left hand side of the				
+ Add content - initial equation. That is, level curves $F(x, y) = C$ are solutions to the differential equation:					
ß	<u>Different</u> 2022	ial Equations Fall $(4xy^2$ First:	$(4y)dx+(4x^2y-4x)dy=0$		
*	<u>Home</u>	$M_y(x,y) =$, and $N_x(x,y)=$	•	
1	<u>Instructo</u>	Instructor Falsses quation is not exact, enter <i>not exact</i> , otherwise enter in $F(x, y)$ here			
8	<u>Course C</u> Pr e blem	atalog Repository			
2	Help Center 9 a. Find a particular solution to the nonhomogeneous differential equation $y'' + 4y' + 5y = 15x + e^{-x}$.				
	 y_p = b. Find the most general solution to the associated homogeneous differential equation. Use c₁ and c₂ in your answer to denote arbitrary constants, and enter them as c1 and c2. 				
		$y_h =$			
	c. Find the most general solution to the original nonhomogeneous differential equation. Use c_1 and c_2 in your answer to denote arbitrary constants.				
		y =			
:	=				
	10 (1 point) Use the method of undetermined coefficients to solve the following differential equation:				
			y''+y'=4x		
		Answer: $y(x) =$	$+C_1$	$+C_2$	
	NOTE: The order of your answers is important in this problem. For example, webwork may expect the answer "A+B" but the answer you give is "B+A". Both answers are correct but webwork will only accept the former.			example, webwork a answers are correct	
:	=				
	11	(1 point) Use the method of und	etermined coefficients to solve the fol	lowing differential	

4 of 9

(1 point) Solve the initial value problem 16 $(5+x^2)y''+1y=0, \ y(0)=0, \ y'(0)=7.$ + Add content • It the solution is $\frac{\text{Differential Equations Fall}}{y = c_0 + c_1 x} + c_2 x^2 + c_3 x^3 + c_4 x^4 + c_5 x^5 + c_6 x^6 + c_7 x^7 + \cdots,$ ß <u>2022</u> enter the following coefficients: 斧 <u>Home</u> Instructor Courses • <u>3</u> Course Catalog ٨ $\frac{\text{Problem Repository}}{c_2} =$ <u>Help Center</u> $_{3}=$? $c_4 =$ $c_5 =$ $c_{6} =$: =

 \Box 17 Assume that *y* is the solution of the initial-value problem

$$y'+4y=egin{cases} rac{2\sin x}{x} & x
eq 0\ 2 & x=0\ \end{pmatrix}, \qquad y(0)=1\ .$$

If y is written as a power series

$$y=\sum_{n=0}^\infty c_n x^n \ ,$$

Note: You do not have to find a general expression for c_n . Just find the coefficients one by one.

: =

18

The general solution of the differential equation $x^2y'' + xy' + (81x^2 - 4)y = 0$ is?

 $\begin{array}{c} \bigcirc \mathbf{A.} \ c_1 J_2(9x) + c_2 Y_2(9x) \\ & \bigcirc \mathbf{B.} \ c_1 J_{-9}(2x) + c_2 Y_9(2x) \\ & \bigcirc \mathbf{C.} \ c_1 J_9(2x) + c_2 Y_9(2x) \\ & \bigcirc \mathbf{D.} \ c_1 J_{-2}(9x) + c_2 J_2(9x) \end{array}$

: =

• Add content.
 Set up an integral for finding the Laplace transform of the following function:

$$f(t) = \begin{cases} 0, & 0 \le t < 2 \\ t = 0, & 2 \le t. \end{cases}$$

 • Differential Equations Fail

 2022

 • inome

 • inome

 • course Catalong

 • reobern Reportation that antiderivative (with constant term 0) corresponding to the previous part.

 • their content equivalence of the set of the set of the inverse Laplace transform of $f(t)$:

 • their content equivalence of the inverse Laplace transform you found exist? In other words, what is the domain of $F(s)$?

 • of

