```
+ Add content -
```

Differential Equations Fall 2022

ヘ Home
20 Instructor Courses 3

E Course Catalog
© Problem Repository
? Help Center
A．ODE
Differential Equabtions Fall
2022C．first orderD．second order
父 HomeE．third order
2．Instructor Catutiones 3
\square G．a candidate for integrating factors
目 Course Catalog．separable
ㅇ Problem Reprofitonxygeneous
\square J．autonomous
？Help Center
：＝2 Check all that apply to the differential equation $\frac{d^{3} y}{d x^{3}}+5\left(\frac{d y}{d x}\right)^{3}-4 y=e^{x}$A．ODE
B．PDEC．first orderD．second orderE．third orderF．linearG．a candidate for integrating factors
H．separable
\square I．homogeneous
\square J．autonomous
：＝

3
Check all that apply to the differential equation $P^{\prime \prime}+2 P^{\prime}=0$A．ODEB．PDEC．first orderD．second order
E．third orderF．linearG．a candidate for integrating factorsH．separableI．homogeneous
J．autonomous4 Solve the differential equation by the method of integrating factors.

$$
\frac{d y}{d x}+2 x y=10 x
$$

Use "C" to represent any constant of integration.
(a) Identify the integrating factor, $\alpha(x)$.

E Course Catalog $=$

- Problem Repository
(b) Find the general solution.
? Help Center $(x)=$ \square
Note: Use C for the arbitrary constant.
(c) Solve the initial value problem $y(1)=0$.
$y(x)=$ \qquad
: $=$Consider the logistic equation

$$
\dot{y}=y(1-y)
$$

(a) Find the solution satisfying $y_{1}(0)=16$ and $y_{2}(0)=-5$.
$y_{1}(t)=$
$y_{2}(t)=$ \qquad
(b) Find the time t when $y_{1}(t)=8$.
$t=$ \qquad
(c) When does $y_{2}(t)$ become infinite?
$t=$ \qquad
$:=$7 Solve the separable differential equation.

$$
y^{\prime}=10 y^{2}
$$

Use the following initial condition: $y(10)=2$
$y=$ \qquad
Note: Your answer should be a function of x. If it is exact find a function $\mathrm{F}(\mathrm{x}, \mathrm{y})$ whose differential, $d F(x, y)$ is the left hand side of the Add content - antial equation. That is, level curves $F(x, y)=C$ are solutions to the differential equation:
Differential Equations Fall
$\left(4 x y^{2}-4 y\right) d x+\left(4 x^{2} y-4 x\right) d y=0$

2022
First:

Home
$M_{y}(x, y)=$ \square , and $N_{x}(x, y)=$ \qquad

回 Course Catalog
을 Prolem Repository
? Help Center
a. Find a particular solution to the nonhomogeneous differential equation
$y^{\prime \prime}+4 y^{\prime}+5 y=15 x+e^{-x}$.
$y_{p}=$ \qquad
b. Find the most general solution to the associated homogeneous differential equation. Use c_{1} and c_{2} in your answer to denote arbitrary constants, and enter them as $c 1$ and c2.
$y_{h}=\square$
c. Find the most general solution to the original nonhomogeneous differential equation. Use c_{1} and c_{2} in your answer to denote arbitrary constants.
\qquad
: =

10
(1 point) Use the method of undetermined coefficients to solve the following differential equation:

NOTE: The order of your answers is important in this problem. For example, webwork may expect the answer " $\mathrm{A}+\mathrm{B}$ " but the answer you give is " $\mathrm{B}+\mathrm{A}$ ". Both answers are correct but webwork will only accept the former.
equation:

$$
y^{\prime \prime}+6 y^{\prime}+9 y=2 \sin (x)
$$

Differential Equations Fall
2022 NOTE: The order of your answers is important in this problem. For example, webwork may expect the answer " $\mathrm{A}+\mathrm{B}$ " but the answer you give is " $\mathrm{B}+\mathrm{A}$ ". Both answers are correct

ヘ Home but webwork will only accept the former.

2a: Ins产ructor Courses 3
© Gourse Cat \quad llo (oint) Use the method of undetermined coefficients to solve the following differential
© Problem Reposition:
? Help Center

$$
y^{\prime \prime}+6 y^{\prime}+9 y=2 e^{-x}
$$

NOTE: The order of your answers is important in this problem. For example, webwork may expect the answer " $\mathrm{A}+\mathrm{B}$ " but the answer you give is " $\mathrm{B}+\mathrm{A}$ ". Both answers are correct but webwork will only accept the former.
: $=$It can be shown that $y_{1}=e^{5 x}$ and $y_{2}=x e^{5 x}$ are solutions to the differential equation $\frac{d^{2} y}{d x^{2}}-10 \frac{d y}{d x}+25 y=0$.
$W\left(y_{1}, y_{2}\right)=\square$.
$c_{1} y_{1}+c_{2} y_{2}$ is the general solution to the equation on the interval
\qquad
$:=$
$\square 14$ Find a particular solution to $y^{\prime \prime}+10 y^{\prime}+25 y=\frac{e^{-5 x}}{x^{3}}$
$y_{\mathrm{p}}=\square$
: $=$
(1 point) Solve the following differential equation:

$$
y^{\prime \prime}+4 y=\sin ^{3} x
$$

: $=$
(1 point) Solve the initial value problem

Add content •
It the solution is
$\Xi \quad \underline{\text { Differential Equations Fall }} \underset{\underline{2022}}{y=c_{0}+c_{1} x}+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+c_{5} x^{5}+c_{6} x^{6}+c_{7} x^{7}+\cdots$,
enter the following coefficients:
$\boldsymbol{\aleph}$ Home
2. Instructor Courses

$$
\left(5+x^{2}\right) y^{\prime \prime}+1 y=0, y(0)=0, y^{\prime}(0)=7
$$

E Course Catadpg=
Э Problem Repository
? Help Center $_{c_{3}}=$
$c_{4}=\square$
$c_{5}=\square \square$
$c_{6}=\square \square$
$\rho_{-}=\square$
: $=$
$\square \quad 17$
Assume that y is the solution of the initial-value problem

$$
y^{\prime}+4 y=\left\{\begin{array}{ll}
\frac{2 \sin x}{x} & x \neq 0 \\
2 & x=0
\end{array}, \quad y(0)=1\right.
$$

If y is written as a power series

$$
y=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

then the first few terms are

Note: You do not have to find a general expression for c_{n}. Just find the coefficients one by one.
: =
$\square \quad 18$
The general solution of the differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(81 x^{2}-4\right) y=0$ is?
A. $c_{1} J_{2}(9 x)+c_{2} Y_{2}(9 x)$
B. $c_{1} J_{-9}(2 x)+c_{2} Y_{9}(2 x)$
C. $c_{1} J_{9}(2 x)+c_{2} Y_{9}(2 x)$
D. $c_{1} J_{-2}(9 x)+c_{2} J_{2}(9 x)$

Add content - Set up an integral for finding the Laplace transform of the following function:

$$
f(t)= \begin{cases}0, & 0 \leq t<2 \\ t-9, & 2 \leq t\end{cases}
$$

Differential Equations Fall
2022

Home

$$
F(s)=\mathcal{L}\{f(t)\}=\int_{A}^{B}
$$

[.] Instructor Courses where $A \stackrel{\underline{3}}{=}$ \square and $B=$ \qquad
回 Course Catalog
응 Problem Repositfind the antiderivative (with constant term 0) corresponding to the previous part.
? Help Center \square
c. Evaluate appropriate limits to compute the Laplace transform of $f(t)$:

$$
F(s)=\mathcal{L}\{f(t)\}=\square
$$

d. Where does the Laplace transform you found exist? In other words, what is the domain of $F(s)$?
: =
$\square \quad 20$
(1 point) Find the inverse Laplace transform of

$$
\frac{9 s+2}{s^{2}+17} \quad s>0
$$

$y(t)=$ \qquad
: $=$Compute the inverse Laplace transform:
$\mathcal{L}^{-1}\left\{\frac{-3}{s^{2}-5 s+4} e^{-4 s}\right\}=$ \square
(Notation: write $\mathbf{u}(\mathbf{t}-\mathbf{c})$ for the Heaviside step function $u_{c}(t)$ with step at $t=c$.)

If you don't get this in 2 tries, you can get a hint.
$:=$The graph of $f(t)$ is given below:

(Click on graph to enlarge)

Homea. Represent $f(t)$ using a combination of Heaviside step functions. Use $h(t-a)$ for the Heaviside function shifted a units horizontally.

E Course Catalog
ق Problem Repository $f(t)=$ \qquad
? Help Center b. Find the Laplace transform $F(s)=\mathcal{L}\{f(t)\}$ for $s \neq 0$.
$:=$
$\square \quad 23 \quad$ (1 point) Given that

$$
\mathcal{L}\left\{J_{0}(t)\right\}=\frac{1}{\sqrt{s^{2}+1}}
$$

where $J_{0}(t)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n!)^{2}}\left(\frac{t}{2}\right)^{2 n}$, find the Laplace transform of $t J_{0}(t)$.

$$
\mathcal{L}\left\{t J_{0}(t)\right\}=
$$

\qquad
: $=$(1 point) Consider the following initial value problem:

$$
y^{\prime \prime}+81 y=\left\{\begin{array}{ll}
5, & 0 \leq t \leq 6 \\
0, & t>6
\end{array} \quad y(0)=2, y^{\prime}(0)=0\right.
$$

Using Y for the Laplace transform of $y(t)$, i.e., $Y=\mathcal{L}\{y(t)\}$, find the equation you get by taking the Laplace transform of the differential equation and solve for
$Y(s)=$
: $=$(1 point) Given that

$$
\mathcal{L}\left\{\frac{\cos (9 t)}{\sqrt{\pi t}}\right\}=\frac{e^{-9 / s}}{\sqrt{s}}
$$

find the Laplace transform of $\sqrt{\frac{t}{\pi}} \cos (9 t)$.
$\mathcal{L}\left\{\sqrt{\frac{t}{\pi}} \cos (9 t)\right\}=\square$.

Add content -

$$
f(t)= \begin{cases}0 & \text { if } 0 \leq t<5 \\ 5 & \text { if } 5 \leq t<7 \\ 0 & \text { if } 7 \leq t<\infty .\end{cases}
$$

Differential Eqtatiofsisthagagraph of this function to write it in terms of the Heaviside function. Use $2022 \quad h(t-a)$ for the Heaviside function shifted a units horizontally.

ヘ Home $\quad f(t)=\square$
g. Instructor Courses 3
b. Find the Laplace transform $F(s)=\mathcal{L}\{f(t)\}$ for $s \neq 0$.

日 Course Catalog
Problem Reposittdr $(s)=\mathcal{L}\{f(t)\}=\square$
?: Help Center

