1. Determine whether the following lines intersect, and if so, find the point of intersection: $\mathbf{r}_{1}(t)=\langle 1,-2,4\rangle+t\langle 1,3,-1\rangle$ and $\mathbf{r}_{2}(t)=\langle 0,3,-3\rangle+t\langle 2,1,4\rangle$.
2. Let $\mathbf{v}=\langle-2,3,1\rangle$ and $\mathbf{w}=\langle 1,0,-1\rangle$.
(a) Find a unit vector orthogonal to both \mathbf{v} and \mathbf{w}.
(b) Find the area of the parallelogram spanned by \mathbf{v} and \mathbf{w}.
3. Find the projection of $\mathbf{w}=\langle-3,1,0\rangle$ along $\mathbf{v}=\langle 1,0,1\rangle$, and then find the decomposition of \mathbf{w} with respect to \mathbf{v}.
4. Find the two foci and the four vertices of the ellipse $x^{2}+25 y^{2}=25$.
5. Find the position vector $\mathbf{r}(\mathrm{t})$ and the velocity vector $\mathbf{v}(\mathrm{t})$ if the acceleration vector is $\mathbf{a}(t)=\langle 4 t, 6 t\rangle$ and we know $\mathbf{v}(0)=\langle 1,-1\rangle$ and $\mathbf{r}(0)=\langle 1,0\rangle$. Check your answer.
6. Describe in general terms the contour map for a nonconstant function of the form $f(x, y)=a x+b y+c$ if a, b, and c are constants.
7. (a) Find a nonzero vector normal to the graph $z=4-x-2 y^{2}$ at the point $(x, y, z)=(0,1,2)$.
(b) Use the linear approximation of $f(x, y)=4-x-2 y^{2}$ at $(0,1)$ to estimate $f(0.01,0.98)$.
8. Let $f(x, y, z)=5 x^{2}-3 x y+x y z$.
(a) Find the directional derivative of $f(x, y, z)$ in the direction of the vector $\langle 1,1,-1\rangle$ at the point $P=(1,3,0)$.
(b) In which direction (expressed as a unit vector) does $f(x, y, z)$ increase most rapidly at the point $P=(1,3,0)$?
(c) What is this maximum rate of increase at $P=(1,3,0)$?
9. Find the critical points of the function $f(x, y)=x^{4}+y^{4}-4 x y+1$. Then use the Second Derivative Test to determine whether they are local minima, local maxima, or saddle points (or state that the test fails.)
10. If D is the region bounded by the line $y=2 x$ and the parabola $y=x^{2}$, evaluate

$$
\iint_{D} x d A
$$

11. Pick a suitable coordinate system for setting up the integral

$$
\iiint_{D}\left(x^{2}+y^{2}\right)^{3 / 2} d V
$$

where D is the region that lies above the cone $z \sqrt{3}=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=36$. Do not evaluate the integral.
12. Let $f(x, y, z)=e^{x} \cos (y z)$, and let $\mathbf{F}=\nabla f$. If \mathbf{r} is any path from $(0,0,0)$ to $\left(1, \pi^{2}, 1 / \pi\right)$, evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
13. Use Green's Theorem to evaluate $\oint_{C} x y^{2} d x+x^{3} d y$ if C is the boundary of the rectangle with vertices $(0,0),(2,0),(2,3)$, and $(0,3)$, oriented counterclockwise.
14. Use Green's Theorem to calculate the area enclosed by the circle $x^{2}+y^{2}=16$.

