- 1. Determine whether the following lines intersect, and if so, find the point of intersection: $\mathbf{r}_1(t) = \langle 1, -2, 4 \rangle + t \langle 1, 3, -1 \rangle$ and $\mathbf{r}_2(t) = \langle 0, 3, -3 \rangle + t \langle 2, 1, 4 \rangle$.
- 2. Let $\mathbf{v} = \langle -2, 3, 1 \rangle$ and $\mathbf{w} = \langle 1, 0, -1 \rangle$.
 - (a) Find a unit vector orthogonal to both \mathbf{v} and \mathbf{w} .
 - (b) Find the area of the parallelogram spanned by \mathbf{v} and \mathbf{w} .
- 3. Find the projection of $\mathbf{w} = \langle -3, 1, 0 \rangle$ along $\mathbf{v} = \langle 1, 0, 1 \rangle$, and then find the decomposition of \mathbf{w} with respect to \mathbf{v} .
- 4. Find the two foci and the four vertices of the ellipse $x^2 + 25y^2 = 25$.
- 5. Find the position vector $\mathbf{r}(t)$ and the velocity vector $\mathbf{v}(t)$ if the acceleration vector is $\mathbf{a}(t) = \langle 4t, 6t \rangle$ and we know $\mathbf{v}(0) = \langle 1, -1 \rangle$ and $\mathbf{r}(0) = \langle 1, 0 \rangle$. Check your answer.
- 6. Describe in general terms the contour map for a nonconstant function of the form f(x, y) = ax + by + c if a, b, and c are constants.
- 7. (a) Find a nonzero vector normal to the graph $z = 4 x 2y^2$ at the point (x, y, z) = (0, 1, 2).

(b) Use the linear approximation of $f(x, y) = 4 - x - 2y^2$ at (0, 1) to estimate f(0.01, 0.98).

8. Let $f(x, y, z) = 5x^2 - 3xy + xyz$.

(a) Find the directional derivative of f(x, y, z) in the direction of the vector $\langle 1, 1, -1 \rangle$ at the point P = (1, 3, 0).

(b) In which direction (expressed as a unit vector) does f(x, y, z) increase most rapidly at the point P = (1, 3, 0)?

- (c) What is this maximum rate of increase at P = (1, 3, 0)?
- 9. Find the critical points of the function $f(x, y) = x^4 + y^4 4xy + 1$. Then use the Second Derivative Test to determine whether they are local minima, local maxima, or saddle points (or state that the test fails.)
- 10. If D is the region bounded by the line y = 2x and the parabola $y = x^2$, evaluate

$$\iint_D x \, dA.$$

11. Pick a suitable coordinate system for setting up the integral

$$\iiint_D \left(x^2 + y^2\right)^{3/2} \, dV_2$$

where D is the region that lies above the cone $z\sqrt{3} = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = 36$. Do not evaluate the integral.

- 12. Let $f(x, y, z) = e^x \cos(yz)$, and let $\mathbf{F} = \nabla f$. If \mathbf{r} is any path from (0,0,0) to $(1, \pi^2, 1/\pi)$, evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$.
- 13. Use Green's Theorem to evaluate $\oint_C xy^2 dx + x^3 dy$ if C is the boundary of the rectangle with vertices (0,0), (2,0), (2,3), and (0,3), oriented counterclockwise.
- 14. Use Green's Theorem to calculate the area enclosed by the circle $x^2 + y^2 = 16$.