Calculus II (CRN 64589) - Final Exam Sample Problems

The final exam will have ten questions.

I. Integration by Substitution

I-1. Evaluate $\int \frac{\cos (\theta)}{1+\sin ^{2}(\theta)} d \theta$.
I-2. Evaluate $\int \frac{x^{2}}{\sqrt{1-x}} d x$.
I-3. Evaluate $\int \frac{e^{-x}}{1+e^{-x}} d x$.
I-4. Evaluate $\int \frac{(\ln (x))^{2}}{x} d x$.
I-5. Use the substitution $x=\sin ^{2}(\theta)$ with $0 \leq \theta \leq \frac{\pi}{2}$ to express $\int_{0}^{1 / 2} \sqrt{\frac{x}{1-x}} d x$ as a trigonometric integral.

I-6. Use the substitution $u=1+\sqrt{x}$ to evaluate $\int_{0}^{1} \frac{\sqrt{x}}{1+\sqrt{x}} d x$.

II. Integration by Parts

II-1. Evaluate $\int_{0}^{\pi / 2} \theta \cos (\theta) d \theta$.
II-2. Evaluate $\int x e^{-2 x} d x$.
II-3. Evaluate $\int x^{3} \ln (x) d x$.
II-4. Evaluate $\int_{0}^{1} \arctan (x) d x$.
II-5. Evaluate $\int \frac{\ln \left(1+x^{2}\right)}{x^{2}} d x$.

III. Trigonometric Integrals

III-1. Evaluate $\int \cos ^{3}(\psi) d \psi$.

III-2. Evaluate $\int_{\pi / 8}^{\pi / 4} \cos ^{2}(2 \theta) d \theta$.
III-3. Evaluate $\int \frac{1}{1+\sin (\theta)} d \theta$. (Hint: Simplify the integrand by multiplying by $1-\sin (\theta)$ in the numerator and denominator.)

III-4. Evaluate $\int \sec ^{4}(x) d x$.
III-5. Evaluate $\int \tan ^{3}(x) d x$.

IV. Partial Fractions

IV-1. Find the partial fraction expansion of $\frac{2 x}{(x+1)(2 x+1)(3 x+1)}$.
IV-2. Find the partial fraction expansion of $\frac{3 x+1}{x^{2}(x-3)}$.
IV-3. Find the partial fraction expansion of $\frac{x^{2}}{(x+1)\left(x^{2}+4\right)}$.
IV-4. Find the partial fraction expansion of $\frac{1}{\left(x^{2}-1\right)^{2}}$.
IV-5. Find the partial fraction expansion of $\frac{1}{\left(x^{2}+1\right)\left(x^{2}+2\right)}$.

V. Improper Integrals

V-1. Evaluate $\int_{0}^{\infty} x e^{-x^{2}} d x$. (Hint: Use integration by substitution to evaluate the antiderivative.)

V-2. Evaluate $\int_{0}^{\infty} \frac{2 x}{(x+1)(2 x+1)(3 x+1)} d x$. (Hint: See Problem IV-1.)
V-3. Evaluate $\int_{1}^{\infty} \frac{\ln \left(1+x^{2}\right)}{x^{2}} d x$. (Hint: See Problem II-5.)
V-4. Evaluate $\int_{0}^{1} \sqrt{\frac{x}{1-x}} d x$. (Hint: See Problem I-6.)
$\mathbf{V}-5$. Use a comparison to decide whether the integral $\int_{0}^{\infty} \frac{x^{2}}{x^{4}+1} d x$ converges or diverges.
V-6. Use a comparison to decide whether the integral $\int_{1}^{\infty} \frac{2+\cos (3 x)}{x} d x$ converges or diverges.

VI. Geometric Series

VI-1. Does the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{n}}{2^{2 n}}$ converge or diverge? If it converges, what is its value?
VI-2. What condition on x is required for the series $\sum_{n=0}^{\infty} e^{-n x}$ to converge? When this condition is met, what is the value of the series?

VI-3. Use a geometric series to evaluate the repeating decimal $0.2 \overline{31}=0.2313131 \ldots$ as a rational number.

VI-4. Write $\frac{x}{3 x-2}$ as a power series with center -1 and state the Interval of Convergence of the series.

VI-5. Write the series

$$
\frac{1}{t}-\frac{1}{t^{3}}+\frac{1}{t^{5}}-\frac{1}{t^{7}}+\ldots
$$

using sigma notation with the sum starting at $n=1$. State the condition required for the series to converge and the value of the series when it does converge.

VI-6. Write the series

$$
\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{9}\right)+\left(\frac{1}{8}+\frac{1}{27}\right)+\left(\frac{1}{16}-\frac{1}{81}\right)+\left(\frac{1}{32}+\frac{1}{243}\right)+\ldots
$$

using sigma notation with the sum starting at $n=1$. What is the value of the series?

VII. Taylor Polynomials/Series

VII-1. Let f be a function whose $n^{\text {th }}$ derivative at 1 is $f^{(n)}(1)=(-1)^{n}(n+2)$! for $n \geq 0$. What is the Taylor series of f with center 1 ?

VII-2. Find the third Taylor polynomial $T_{3}(x)$ for $f(x)=\sin (x)$ with center $\frac{\pi}{4}$.
VII-3. Continuing with Problem VII-2, estimate the error in using $T_{3}(x)$ to approximate $\sin (x)$ on the interval $[\pi / 4, \pi / 2]$.

VII-4. Find the second Taylor polynomial $T_{2}(x)$ for $f(x)=\frac{1}{\sqrt{x}}$ with center 9 .
VII-5. Continuing with Problem VII-4, estimate the error in using $T_{2}(x)$ to approximate $\frac{1}{\sqrt{x}}$ on the interval $[8,9]$.

VII-6. Find a value $c>1$ such that we may approximate $f(x)=\ln (x)$ by its second Taylor polynomial $T_{2}(x)$ with center 1 on the interval $[1, c]$ with error no more than 9×10^{-3}.

VIII. Interval of Convergence

VIII-1. Find the Interval of Convergence of $\sum_{n=0}^{\infty} \frac{(-2)^{n}}{n!(n+1)!}(x-1)^{n}$.
VIII-2. Find the Interval of Convergence of $\sum_{n=0}^{\infty}(n!)^{2} x^{2 n}$.
VIII-3. Find the Interval of Convergence of $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{8^{n}+2^{n}}(x+2)^{3 n}$.
VIII-4. Find the Interval of Convergence of $\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)} x^{n}$.
VIII-5. Find the Interval of Convergence of $\sum_{n=0}^{\infty} \frac{1}{n+3}(x-3)^{n}$.
VIII-6. Find the Interval of Convergence of $\sum_{n=0}^{\infty} \sqrt{2 n+3}(2 x+3)^{2 n}$.

IX. Differentiate/Integrate/Manipulate Power Series

IX-1. Given that $(1+x)^{-1 / 2}=\sum_{n=0}^{\infty}\binom{-1 / 2}{n} x^{n}$ for $-1<x<1$, write the Maclaurin series for $\frac{1}{\sqrt{1-x^{2}}}$.
IX-2. Use your answer to Problem IX-1 to find the Maclaurin series for $\arcsin (x)$. Write the coefficient of x^{9} in this series as an explicit rational number.
IX-3. Express the integral $\int_{0}^{1} \frac{\sin (x)}{x} d x$ as a series. Use your answer to find the value of the integral correct to three decimal places.

IX-4. Rewrite the series $\sum_{n=0}^{\infty} n(n-1) 2^{n}(x-1)^{n-2}$ as power series whose general term involves $(x-1)^{n}$.

IX-5. Let $f(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n(n+1)} x^{n}$. Express $x f^{\prime}(x)$ as a power series.
IX-6. Express $\int_{0}^{1 / 2} \frac{e^{x}-1}{x} d x$ as a series.

X. Parameterizations/Polar Coordinates

X-1. Write a parameterization of the ellipse $4(x+1)^{2}+y^{2}=16$. Sketch the ellipse.
X-2. Write a parameterization of the curve $x=\cos (y)$.
X-3. Eliminate the parameter in the parameterization

$$
\left\{\begin{array}{l}
x=t^{2} \\
y=t^{3}
\end{array}\right.
$$

and use this to sketch the trajectory of this parameterization.
X-4. Find the arc length of the segment of the curve given in Problem X-3 from the point where $t=0$ to the point where $t=1$.

X-5. Find the equation of the tangent line to the curve parameterized by

$$
\left\{\begin{array}{l}
x=2-t e^{-t} \\
y=t+e^{t}
\end{array}\right.
$$

at the point where $t=0$.
X-6. Find two sets of polar coordinates for the point $(x, y)=(-1,1)$, one with $r>0$ and the other with $r<0$.

X-7. What is the equation of the curve $r=\sin (\theta)+\cos (\theta)$ in rectangular coordinates? Use this equation to sketch the curve.

X-8. Write an equation for the line $x+y=1$ in polar coordinates.
X-9. What is the equation of the curve $r=\sin (2 \theta)$ in rectangular coordinates?
$\mathbf{X}-10$. Write an equation for the hyperbola $x y=1$ in polar coordinates.

