Calculus II (CRN 64589) - Final Exam Sample Problems

The final exam will have ten questions.

I. Integration by Substitution

I-1. Evaluate
$$\int \frac{\cos(\theta)}{1 + \sin^2(\theta)} d\theta$$
.
I-2. Evaluate $\int \frac{x^2}{\sqrt{1 - x}} dx$.
I-3. Evaluate $\int \frac{e^{-x}}{1 + e^{-x}} dx$.
I-4. Evaluate $\int \frac{(\ln(x))^2}{x} dx$.

I-5. Use the substitution $x = \sin^2(\theta)$ with $0 \le \theta \le \frac{\pi}{2}$ to express $\int_0^{1/2} \sqrt{\frac{x}{1-x}} dx$ as a trigonometric integral.

I-6. Use the substitution $u = 1 + \sqrt{x}$ to evaluate $\int_0^1 \frac{\sqrt{x}}{1 + \sqrt{x}} dx$.

II. Integration by Parts

II-1. Evaluate
$$\int_{0}^{\pi/2} \theta \cos(\theta) d\theta$$
.
II-2. Evaluate $\int xe^{-2x} dx$.
II-3. Evaluate $\int x^{3} \ln(x) dx$.
II-4. Evaluate $\int_{0}^{1} \arctan(x) dx$.
II-5. Evaluate $\int \frac{\ln(1+x^{2})}{x^{2}} dx$.

III. Trigonometric Integrals

III-1. Evaluate
$$\int \cos^3(\psi) d\psi$$
.

III-2. Evaluate
$$\int_{\pi/8}^{\pi/4} \cos^2(2\theta) d\theta$$
.
III-3. Evaluate $\int \frac{1}{1 + \sin(\theta)} d\theta$. (Hint: Simplify the integrand by multiplying by $1 - \sin(\theta)$ in the numerator and denominator.)
III-4. Evaluate $\int \sec^4(x) dx$.

III-5. Evaluate $\int \tan^3(x) dx$.

IV. Partial Fractions

IV-1. Find the partial fraction expansion of $\frac{2x}{(x+1)(2x+1)(3x+1)}$. **IV-2.** Find the partial fraction expansion of $\frac{3x+1}{x^2(x-3)}$. **IV-3.** Find the partial fraction expansion of $\frac{x^2}{(x+1)(x^2+4)}$. **IV-4.** Find the partial fraction expansion of $\frac{1}{(x^2-1)^2}$. **IV-5.** Find the partial fraction expansion of $\frac{1}{(x^2+1)(x^2+2)}$.

V. Improper Integrals

- **V-1.** Evaluate $\int_0^\infty x e^{-x^2} dx$. (Hint: Use integration by substitution to evaluate the antiderivative.)
- **V-2.** Evaluate $\int_0^\infty \frac{2x}{(x+1)(2x+1)(3x+1)} dx$. (Hint: See Problem IV-1.)
- **V-3.** Evaluate $\int_{1}^{\infty} \frac{\ln(1+x^2)}{x^2} dx$. (Hint: See Problem II-5.)

V-4. Evaluate
$$\int_0^1 \sqrt{\frac{x}{1-x}} dx$$
. (Hint: See Problem I-6.)

V-5. Use a comparison to decide whether the integral $\int_0^\infty \frac{x^2}{x^4 + 1} dx$ converges or diverges. **V-6.** Use a comparison to decide whether the integral $\int_1^\infty \frac{2 + \cos(3x)}{x} dx$ converges or diverges.

VI. Geometric Series

VI-1. Does the series
$$\sum_{n=0}^{\infty} \frac{(-1)^n 3^n}{2^{2n}}$$
 converge or diverge? If it converges, what is its value?

VI-2. What condition on *x* is required for the series $\sum_{n=0}^{\infty} e^{-nx}$ to converge? When this condition is met, what is the value of the series?

- **VI-3.** Use a geometric series to evaluate the repeating decimal $0.2\overline{31} = 0.2313131...$ as a rational number.
- **VI-4.** Write $\frac{x}{3x-2}$ as a power series with center -1 and state the Interval of Convergence of the series.
- VI-5. Write the series

$$\frac{1}{t} - \frac{1}{t^3} + \frac{1}{t^5} - \frac{1}{t^7} + \dots$$

using sigma notation with the sum starting at n = 1. State the condition required for the series to converge and the value of the series when it does converge.

VI-6. Write the series

$$\left(\frac{1}{2} + \frac{1}{3}\right) + \left(\frac{1}{4} - \frac{1}{9}\right) + \left(\frac{1}{8} + \frac{1}{27}\right) + \left(\frac{1}{16} - \frac{1}{81}\right) + \left(\frac{1}{32} + \frac{1}{243}\right) + \dots$$

using sigma notation with the sum starting at n = 1. What is the value of the series?

VII. Taylor Polynomials/Series

- **VII-1.** Let *f* be a function whose n^{th} derivative at 1 is $f^{(n)}(1) = (-1)^n (n+2)!$ for $n \ge 0$. What is the Taylor series of *f* with center 1?
- **VII-2.** Find the third Taylor polynomial $T_3(x)$ for $f(x) = \sin(x)$ with center $\frac{\pi}{4}$.
- **VII-3.** Continuing with Problem VII-2, estimate the error in using $T_3(x)$ to approximate sin(x) on the interval $[\pi/4, \pi/2]$.
- **VII-4.** Find the second Taylor polynomial $T_2(x)$ for $f(x) = \frac{1}{\sqrt{x}}$ with center 9.
- **VII-5.** Continuing with Problem VII-4, estimate the error in using $T_2(x)$ to approximate $\frac{1}{\sqrt{x}}$ on the interval [8,9].
- **VII-6.** Find a value c > 1 such that we may approximate $f(x) = \ln(x)$ by its second Taylor polynomial $T_2(x)$ with center 1 on the interval [1, c] with error no more than 9×10^{-3} .

VIII. Interval of Convergence

VIII-1. Find the Interval of Convergence of $\sum_{n=0}^{\infty} \frac{(-2)^n}{n!(n+1)!} (x-1)^n.$

VIII-2. Find the Interval of Convergence of $\sum_{n=0}^{\infty} (n!)^2 x^{2n}$.

VIII-3. Find the Interval of Convergence of $\sum_{n=0}^{\infty} \frac{(-1)^n}{8^n + 2^n} (x+2)^{3n}.$

VIII-4. Find the Interval of Convergence of
$$\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)} x^n$$
.

VIII-5. Find the Interval of Convergence of $\sum_{n=0}^{\infty} \frac{1}{n+3} (x-3)^n$.

VIII-6. Find the Interval of Convergence of $\sum_{n=0}^{\infty} \sqrt{2n+3} (2x+3)^{2n}$.

IX. Differentiate/Integrate/Manipulate Power Series

IX-1. Given that
$$(1+x)^{-1/2} = \sum_{n=0}^{\infty} {\binom{-1/2}{n}} x^n$$
 for $-1 < x < 1$, write the Maclaurin series for $\frac{1}{\sqrt{1-x^2}}$.

- **IX-2.** Use your answer to Problem IX-1 to find the Maclaurin series for $\arcsin(x)$. Write the coefficient of x^9 in this series as an explicit rational number.
- **IX-3.** Express the integral $\int_0^1 \frac{\sin(x)}{x} dx$ as a series. Use your answer to find the value of the integral correct to three decimal places.
- **IX-4.** Rewrite the series $\sum_{n=0}^{\infty} n(n-1)2^n(x-1)^{n-2}$ as power series whose general term involves $(x-1)^n$.

IX-5. Let
$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n(n+1)} x^n$$
. Express $xf'(x)$ as a power series.

IX-6. Express $\int_0^{1/2} \frac{e^x - 1}{x} dx$ as a series.

X. Parameterizations/Polar Coordinates

- **X-1.** Write a parameterization of the ellipse $4(x + 1)^2 + y^2 = 16$. Sketch the ellipse.
- **X-2.** Write a parameterization of the curve x = cos(y).
- **X-3.** Eliminate the parameter in the parameterization

$$\begin{cases} x = t^2 \\ y = t^3 \end{cases}$$

and use this to sketch the trajectory of this parameterization.

- **X-4.** Find the arc length of the segment of the curve given in Problem X-3 from the point where t = 0 to the point where t = 1.
- **X-5.** Find the equation of the tangent line to the curve parameterized by

$$\begin{cases} x = 2 - te^{-t} \\ y = t + e^t \end{cases}$$

at the point where t = 0.

- **X-6.** Find two sets of polar coordinates for the point (x, y) = (-1, 1), one with r > 0 and the other with r < 0.
- **X-7.** What is the equation of the curve $r = \sin(\theta) + \cos(\theta)$ in rectangular coordinates? Use this equation to sketch the curve.
- **X-8.** Write an equation for the line x + y = 1 in polar coordinates.
- **X-9.** What is the equation of the curve $r = \sin(2\theta)$ in rectangular coordinates?
- **X-10.** Write an equation for the hyperbola xy = 1 in polar coordinates.