1. Write out the partial fraction decomposition of each function. Do not determine the numerical values of the coefficients.
 (a) \(\frac{2}{(x - 1)(x + 1)} = \)
 (b) \(\frac{4x^2 + 3x - 1}{x(x^2 + 1)} = \)
 (c) \(\frac{2x}{(x - 1)(x - 2)^2} = \)

2. Evaluate \(\int \sin^2 x \cos^3 x \, dx \)

3. Use a trig substitution to evaluate \(\int \frac{dt}{t^2 \sqrt{t^2 - 16}} \)

4. Evaluate the integral using partial fractions:
 \(\int \frac{5x + 1}{(2x + 1)(x - 1)} \, dx \)

5. Use the Comparison Theorem to determine whether the integral is convergent or divergent.
 \(\int_1^\infty \frac{3 + \sin x}{\sqrt{x}} \, dx \)

6. Determine if the integral is convergent or divergent. Evaluate if convergent.
 \(\int_3^\infty \frac{dx}{(x - 2)^{3/2}} \)

7. Evaluate
 \(\int \frac{dx}{(1 - x^2)^{3/2}} \)

8. Evaluate
 \(\int_1^3 r^4 \ln r \, dr \)
9. Evaluate
\[\int te^{-3t} \, dt \]

10. Use integration by parts to evaluate
\[\int e^{-\theta} \cos 2\theta \, d\theta. \]

11. (12 points) Determine if the series converges or diverges using the \(n \)th Divergence Test.
 (a) (8 points) Calculate the limit.
 \[\lim_{n \to \infty} \frac{n}{\sqrt{n^2 + 16}} \]

 (b) (4 points) Use this limit to determine if the series \(\sum_{n=1}^{\infty} \) converges or diverges.
 Does the series converge or diverge? **Circle the correct answer.**
 1. Because the limit is finite, the series converges by the \(n \)th Term Divergence Test.
 2. Because the limit is infinite, the series diverges by the \(n \)th Term Divergence Test.
 3. Because the limit is finite and nonzero, the series diverges by the \(n \)th Term Divergence Test.

12. Calculate the arc length, \(s \) of the function \(y = 12x^{3/2} \) over the interval \([1, 2]\).

13. A plate in the shape of an isosceles triangle with base 1 meter and height 10 meters is submerged vertically in a tank of water so that the top of the triangle is located 3 m below the surface of the water. Calculate the total fluid force \(F \) on a side of the plate. The acceleration for gravity is 9.8 \(m/s^2 \) and the density of water is 1000 \(kg/m^3 \).

14. Compute the surface area of revolution about the \(x \)-axis over the interval \([0, 8]\) for \(y = x \).

15. Consider the series.
 \[\frac{14}{3^3} + \frac{14}{3^4} + \frac{14}{3^5} + \frac{14}{3^6} + \cdots \]
 This can be written as a geometric series in the form \(\sum_{n=0}^{\infty} cr^n \). Identify \(c \) and \(r \) in the geometric series.
 \[c = \quad \text{___________}, \quad r = \quad \text{___________} \]
Calculate the sum of the series

\[
\frac{14}{3} + \frac{14}{3^2} + \frac{14}{3^3} + \frac{14}{3^4} + \cdots =
\]

16. Calculate \(S_3 \), \(S_4 \), and \(S_5 \), and then find the sum \(\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} \) using the identity

\[
\frac{1}{4n^2 - 1} = \frac{1}{2} \left(\frac{1}{2n - 1} - \frac{1}{2n + 1} \right)
\]

\(S_3 = \) ____________________________

\(S_4 = \) ____________________________

\(S_5 = \) ____________________________

\[
\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} = \) ____________________________

17. Determine if the series converges or diverges. Find the sum if possible.

\[
\sum_{n=2}^{\infty} e^{1-4n}
\]

18. Determine the limit of the sequence and state if the sequence converges or diverges

\[
a_n = \ln \left(\frac{2n + 9}{-8 + 5n} \right)
\]

19. Determine if the series converges or diverges.

\[
\sum_{n=1}^{\infty} \frac{n}{10n + 12}
\]

20. Use the Squeeze Theorem to determine the limit of the sequence

\[
a_n = \frac{\sin n}{\sqrt{n}}
\]
21. Use the Limit Comparison Test to test the series for convergence or divergence

\[\sum_{n=1}^{\infty} \frac{1}{ \sqrt{n^2 - 1} } \]

22. Use the Integral Test to determine if the series converges or diverges.

\[\sum_{n=2}^{\infty} \frac{1}{ n \sqrt{\ln n} } \]

23. Find the interval of convergence of the series

\[\sum_{n=0}^{\infty} \frac{(x - 2)^n}{n^2 + 1} \]

24. Use the Root Test to test the convergence of the series \(\sum_{n=1}^{\infty} \left(\frac{2n + 3}{3n + 2} \right)^n \).

25. Compute the 3rd degree Taylor polynomial, \(T_3 \) for \(f(x) = 3\sqrt{x} \) centered at \(a = 1 \).

26. Determine whether the series is absolutely convergent, conditionally convergent, or divergent \(\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n^2 + 4} \).

27. Evaluate the indefinite integral as an infinite series

\[\int \frac{\cos x - 1}{x} \, dx \]

28. Use series to evaluate the limit. (Do not use l’Hospital’s rule)

\[\lim_{x \to 0} \frac{x - \ln(1 + x)}{x^2} \]

29. Test the series for convergence or divergence

\[\sum_{n=1}^{\infty} \frac{3^n n^2}{n!} \]

30. Test the series for convergence or divergence

\[\sum_{n=1}^{\infty} \frac{1}{5 + 4^n} \]
31. Find $\frac{dy}{dx}$ for $\left(\ln(t), \frac{1}{t}\right)$ at $t = 7$.

32. Find $\frac{dy}{dx}$ for $(\sec \theta, \tan \theta)$ at $\theta = \frac{3\pi}{4}$.

33. Calculate the arc length integral s for the logarithmic spiral

 $$c(t) = (e^t \cos(t), e^t \sin(t))$$

 for $0 \leq t \leq 7$

34. Compute the surface area of the cone generated by revolving $c(t) = (t^2, t)$ for $0 \leq t \leq 2$

35. Convert to an equation in rectangular coordinates

 $$r = 3 \csc(\theta) - \sec(\theta)$$

36. Convert the equation $r = 4 \sec(\theta)$ from polar coordinates to rectangular coordinates