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1. Sums of dynamical heights on the projective line (Fili)

Posed by: Paul Fili, Oklahoma State University
Suppose f(z), g(z) ∈ Q(z) are rational maps with algebraic coefficients. The Arakelov-

Zhang pairing, introduced by Petsche, Szpiro, and Tucker [PST12] and denoted 〈f, g〉AZ

measures a sort of dynamical distance between the two maps. It has the property that
〈f, g〉AZ ≥ 0 for all rational maps f, g ∈ Q(z) and 〈f, g〉AZ = 0 if and only if PrePer(f) =
PrePer(g) (equivalently, if PrePer(f) ∩ PrePer(g) is infinite; see [PST12, Theorem 3]). The
Arakelov-Zhang pairing is defined analytically in terms of the canonical adelic measures
associated to each map, and has the property that if αn is any sequence of small points for
f , that is, hf (αn)→ 0 and the αn are distinct, then

hg(αn)→ 〈f, g〉AZ.

Remarkably, this property is symmetric, and if βn is a sequence of small points for g, then

hf (βn)→ 〈f, g〉AZ

as well.
It follows that, if 〈f, g〉AZ > 0, then

lim inf
α∈Q

hf (α) + hg(α) > 0,

and further, by taking a sequence of small points for either f or g, one can see that in fact,

lim inf
α∈Q

hf (α) + hg(α) ≤ 〈f, g〉AZ.

We can think of this sum of heights as essentially the natural height associated to the split
map f × g : P1×P1 → P1×P1. As N.M. Mavraki pointed out to the author, it follows from
a theorem of Zhang [Zha95, Theorem 1.10] that

lim inf
α∈Q

hf (α) + hg(α) ≥ 1

2
〈f, g〉AZ.

This result inspires our question:

Question 1.1. For two rational maps f(z), g(z) ∈ Q(z) with 〈f, g〉AZ > 0, what is the value
of

lim inf
α∈Q

hf (α) + hg(α)?

By the above, the value must lie between 1
2
〈f, g〉AZ and 〈f, g〉AZ. However, the author

is unaware of any examples where the lower bound of Zhang seems to be achieved, and
in some cases, it is impossible to achieve. For example, consider the case of f(z) = z2

and g(z) = 1 − (1 − z)2, which is f conjugated by the map 1 − z. It is easy to see that
hf (α) = h(α), hg(α) = h(1− α), and so

hf (α) + hg(α) = h(α) + h(1− α)
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a quantity famously studied by Zhang [Zha92] and Zagier [Zag93]. In fact, Zagier was able
to give an explicit result, namely, that

h(α) + h(1− α) ≥ 1

2
log

1 +
√

5

2
= 0.2406059 . . .

for all α 6= 0, 1, (1±
√
−3)/2, with equality if and only if α or 1− α is a primitive 10th root

of unity. However, by the work of Petsche, Szpiro, and Tucker [PST12, Prop. 18], we know
that in the case of f(z) = z2 and g(z) = 1− (1− z)2,

〈f, g〉AZ =

∫ 1

0

log |1 + e2πit| dt =
3
√

3

4π
L(2, χ) = 0.323067 . . .

where χ is the nontrivial quadratic character modulo 3. It follows that

h(α) + h(1− α) ≥ 1

2
log

1 +
√

5

2
= 0.2406059 . . . >

1

2
〈f, g〉AZ = 0.161533 . . .

for all but finitely many α ∈ Q. In particular, in this example,

lim inf
α∈Q

hf (α) + hg(α) >
1

2
〈f, g〉AZ.

Zagier speculated that a spectrum of such height values might be found, leading to a smallest
limit point for the height in this example. It seems quite plausible that as the spectrum is
determined, that the limit infimum may in fact be the value of the Arakelov-Zhang pairing
itself. I would make the following conjecture:

Conjecture 1.2. For two rational maps f(z), g(z) ∈ Q(z), we have

lim inf
α∈Q

hf (α) + hg(α) = 〈f, g〉AZ.
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2. Mahler measure and composition of polynomials (Granville)

Posed by: Andrew Granville, University of Montreal

The Mahler measure of a polynomial f(z) = cd
∏d

k=1(z − zk) ∈ C[z], with cd 6= 0, is given
by

M(f) := exp

(
1

2π

∫
log |f(eiθ)| dθ

)
= |cd|

d∏
k=1

max(1, |zk|).(2.1)

Question 2.1. Let f, g ∈ C[z] be two polynomials, and let f ◦g be their composition. What is
the relation between M(f◦g) and M(f),M(g)? Can one prove effective (and sharp) estimates
for M(f ◦ g) in terms of M(f),M(g)?

Question 2.2. How does the Mahler measure behave in the context of polynomial dynamics?
Let f ∈ C[z], deg(f) ≥ 2, and consider the n-fold iterated composition of f denoted by fn.
What is the asymptotic behavior of M(fn)?
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3. Variation of heights for families of curves (Mavraki)

Posed by: Niki Myrto Mavraki, Harvard University

3.1. Setting and background. Let B be an irreducible projective curve and let

f, g : B × P1 → P1

be meromorphic maps. We write fλ = f(λ, ·) (respectively gλ) for each λ ∈ B. Note that
each fλ is a rational map and that for all but finitely many λ ∈ B the maps have equal degree.
For example we could have p : P1×P1 → P1 be given by the degree 2 map p(λ, z) = λz2 + 1
for each λ ∈ C \ {0}, whereas p(0, z) = 0 and p(∞, z) = ∞ are constant maps. The map
f can also be seen as a single rational function f ∈ C(B)(z) defined over the function field
k = C(B). In our example p(z) = tz2 + 1 defined over C(t) = C(P1). Throughout this note
we will assume that

deg f ≥ 2,

so that also

deg fλ = deg f ≥ 2

for all but finitely many λ ∈ B. We will restrict our attention to maps f and curves B that
are defined over Q, so that for each λ ∈ B(Q) except finitely many we have a canonical

height ĥfλ : P1(Q)→ R≥0 associated to fλ ∈ Q(z) as in [CS]. This canonical height appears
also in Zhang’s work [Zh1]. It is the height associated with the fλ-invariant metrized line
bundle Lfλ , with underlying line bundle L = (∞). We refer the reader to Zhang’s article for
the construction of this line bundle for an arbitrary polarized dynamical system. Similarly,
for the ‘geometric’ map f we have a ‘functional’ canonical height ĥf : P1(k)→ R (using the
places of the function field k), which is also induced by an f -invariant metric Lf .

Zhang [Zh1, Theorem 1.4], Gubler [Gu1, Gu2, Gu3] and Chambert-Loir–Thuillier [CLT]
developed an intersection theory for certain adelic metrized line bundles called integrable.
In particular, for all but finitely many λ ∈ B(Q) we have a non-negative intersection number

Lfλ · Lgλ ≥ 0

and equality holds if and only if the associated canonical height functions agree

ĥfλ ≡ ĥgλ .

Similarly, Lf ·Lg ≥ 0 with equality if and only if the functional heights associated with f and
g agree. It is perhaps helpful to note that by the works [BR, CLT, FRL, PST] we know that

for any infinite sequence {xn}n∈N ⊂ P1(Q) with ĥfλ(xn)→ 0, we have ĥgλ(xn)→ Lfλ ·Lgλ , a
result tightly connected with arithmetic equidistribution. We point out that the Arakelov–
Zhang pairing Lfλ · Lgλ can also be though of as a global mutual energy pairing in the
potential theoretic viewpoint of [BR, FRL]. We have

Lfλ · Lgλ =
1

2
((µf − µg, µf − µg)),
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where µf and µg are the adelic canonical measures associated to f and g and ((·, ·)) is a sum
of local mutual energies; see [FRL, Fi].

3.2. Questions and state of affairs. One can ask how the energy pairings Lfλ ·Lgλ behave
as a function of λ.

Question 3.1. Let B be an irreducible projective curve defined over Q and let f, g : B×P1 →
P1 be holomorphic maps also defined over Q. Let h : B(Q) → R be a Weil height on B
corresponding to a divisor with degree 1. Is it true that

lim
h(λ)→∞

Lfλ · Lgλ
h(λ)

= Lf · Lg?(3.1)

To my knowledge, there is no known answer to Question 3.1 in any example; it is unclear
to me what the answer should be. That said, in recent work with Schmidt [MS], we get in
particular that the following holds.

Theorem 3.2 ([MS]). In the setting of Question 3.1, there is a computable constant m :=
mf ,g > 0 such that

lim inf
h(λ)→∞

Lfλ · Lgλ
h(λ)

≥ Lf · Lg

m
.(3.2)

The reader should compare this result with Yuan–Zhang’s work [YZ], where qualitative
analogs of Theorem 3.2 are obtained in much broader generality.

In absence of an answer to Question 3.1 it may be premature to ask if one can hope for a
much better behavior of the energy pairing function. The following question is inspired by
an analogous one of Call–Silverman in some sense; see §3.3.

Question 3.3. In the setting of Question 3.1, is there an R-divisor D = Df ,g with degree

Lf · Lg so that the function λ 7→ Lfλ · Lgλ for λ ∈ B(Q) with finitely many exceptions, is a
Weil height on B corresponding to D up to a bounded error term? In other words, do we
have

Lfλ · Lgλ = hDf ,g
(λ) +O(1)?(3.3)

It is not a priori clear, whether (3.1) or (3.3) can hold even in the case that Lf · Lg = 0.
However, the geometric Bogomolov-type result [MS, Theorem 4.1] I recently established with
Schmidt implies that this is indeed the case. Since this is a non-trivial statement (at least
with the proof we currently have) we record it here as a theorem.

Theorem 3.4 ([MS]). If Lf ·Lg = 0, then Questions 3.3 and 3.1 have an affirmative answer.

3.3. Motivation and more questions. The adelic intersection pairings can be used to
extend the definition of canonical heights from points to subvarieties. For example, looking
at the split geometric (defined over k) map Φ = (f ,g) : P1 × P1 → P1 × P1 acting as
(f ,g)(x, y) = (f(x),g(y)), we may think of Lf · Lg as the canonical height of the diagonal
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∆ ⊂ P1 × P1 under the action of (f ,g). Concretely, ĥΦ(∆) = Lf · Lg. Similarly, if Φλ =

(fλ, gλ), for λ ∈ B(Q), then we have ĥΦλ(∆) = Lfλ · Lgλ .
With the notion of such heights at hand, one can generalize Questions 3.1 and 3.5. We

adopt this perspective in order to relate our questions with previous results and questions
by Call, Silverman and others which highly guided our speculations.

For instance one can replace the diagonal curve by any curve C ⊂ P1 × P1 defined over
k. Note that C then induces a family of curves {Ct}t∈B′ where B′ is a Zariski open subset
of B. For instance the curve x = ty defined over C(t) = C(P1) yields a family of lines
{x = λy}λ∈P1(C) ⊂ P1 × P1. Recall our assumption that B is defined over Q.

Question 3.5. Let C ⊂ P1×P1 be a strict subvariety and let Φ = (f ,g) be a split map such
that deg f = deg g ≥ 2, all defined over Q(B). Let h be a Weil height on B corresponding to
a divisor with degree 1. Do we have

lim
h(λ)→∞

ĥΦλ(Cλ)

h(λ)
= ĥΦ(C)?(3.4)

If C is a point (in P1 × P1), then the question has an affirmative answer as is established
by Call–Silverman [CS], who generalized analogous results in the setting of abelian varieties.
They further asked whether, in the case of points, the following stronger result is true.

Question 3.6. In the setting of Question 3.4 is there an R-divisor D = DΦ,C with degree

ĥΦ(C) ∈ R so that

ĥΦλ(Cλ) = hDΦ,C
(λ) +O(1)?(3.5)

Even in the case of points, this question remains open in general. The two more general
results in this direction are obtained by Ingram [In] and later also by Favre–Gauthier [FG],
who established its validity for polynomials f ,g and points C and by DeMarco–Mavraki
[DM] who allowed for arbitrary rational maps f ,g but imposed a dynamical condition on the
point C. We refer the reader to [DM] and the references therein for a current overview of
the status of this problem and the difficulties that arise. If C is a curve on the other hand,
very little is known such as the analogs of Theorems 3.2 and 3.4 shown in [MS].
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4. Dynamical Mordell–Lang for semiconjugacies (O’Desky)

Posed by: Andrew O’Desky, Princeton University

4.1. Introduction. Let X be a smooth projective complex variety. Let Φ be a self-map of
X. Fix a point x ∈ X. For a subvariety Y ⊂ X let IΦ(x, Y ) := {n ∈ N : Φ◦n(x) ⊂ Y }.
Let X ′ be another smooth projective complex variety with self-map Φ′. Let α : X → X ′ be
a morphism satisfying αΦ = Φ′α (α is a semiconjugacy). Then one has the containment
IΦ(x, Y ) ⊂ IΦ′(αx, αY ), and we let

Eα(x, Y ) := IΦ′(αx, αY )− IΦ(x, Y ).

This set is large when there are many indices n such that Φ′◦n(αx) ∈ αY but Φ◦n(x) 6∈ Y .
For instance, this does not occur if α is injective, in which case Eα(x, Y ) is empty.

Conjecture (relative Dynamical Mordell–Lang). Eα(x, Y ) is a finite union of arithmetic pro-
gressions.

When α is constant this reduces to Dynamical Mordell–Lang (DML) for (X,Φ, x, Y ),
so this may be seen as a relative reformulation of the (cyclic) Dynamical Mordell–Lang
Conjecture.

For short, call α “dynamical” if Eα(x, Y ) is a finite union of arithmetic progressions for all
x and Y . Let

(X,Φ) (X ′,Φ′)

(X ′′,Φ′′)

α

β γ

be a commutative diagram of semiconjugacies. The following facts are easy to show:

(1) Eβ(x, Y ) is the disjoint union of Eα(x, Y ) and Eγ(αx, αY ).
(2) If each of α, γ (resp. β, γ) is dynamical, then β (resp. α) is dynamical.
(3) If each of α, β is dynamical and α is surjective, then γ is dynamical.

In particular, if β and γ are constant and α is surjective and dynamical, then (X,Φ)
satisfies DML if and only if (X ′,Φ′) satisfies DML. For instance, if X has Kodaira dimension
zero then the Albanese morphism α is surjective with connected fibers, and then DML for
(X,Φ) holds if and only if the Albanese morphism α of X is dynamical.

The following observation was worked out in conversations with Thomas Tucker.

Proposition 4.1. Finite semiconjugacies satisfy relative DML.

Proof. Let α : (X,Φ) → (X ′,Φ′) be a semiconjugacy which is a finite morphism. To show
α is dynamical it suffices to show that (X,Φ) satisfies DML if and only if (X ′,Φ′) satisfies
DML. For the ‘only if’ direction, observe that IΦ(x, α−1Z) = IΦ′(y, Z) where x ∈ α−1y is
any preimage, since α is surjective. For the ‘if’ direction, let Y ⊂ X be a closed subvariety
and let x ∈ X. Write Z = αY and decompose α−1Z = W1 ∪ · · · ∪Wr into irreducible closed
subvarieties Wi, none containing another. If i 6= j then dimWi∩Wj < min{dimWi, dimWj},
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so by induction on dimension we may suppose that I := ∪i 6=jIΦ(x,Wi ∩Wj) is a finite union
of arithmetic progressions. By assumption, the set IΦ′(αx, Z) = IΦ(x, α−1Z) = ∪kIΦ(x,Wk)
is a finite union of arithmetic progressions. It is known that IΦ(x,Wk) = Ak tBk where Ak
is a finite union of arithmetic progressions and Bk is a set of Banach density zero [BGT16,
Thm. 11.1.0.7]. It follows that IΦ(x,Wk)\(I ∩IΦ(x,Wk)) can also be expressed as a disjoint
union of A′k, a finite union of arithmetic progressions, with B′k, a set of Banach density zero.
The equality

IΦ(x, α−1Z)\I = tk
(
IΦ(x,Wk)\(I ∩ IΦ(x,Wk))

)
= tk(A′k tB′k)

shows that tkB′k is a finite union of arithmetic progressions, and therefore must be a finite
set. It follows that IΦ(x,Wk) is a finite union of arithmetic progressions for all k. Since α
is finite, the closed subvariety Y is a union of some subset of the irreducible components
{W1, . . . ,Wk} and therefore IΦ(x, Y ) is a finite union of arithmetic progressions as well. �
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5. Equidistribution of integer sequences in Zp (Somesunderam, O’Dorney)

Posed by: Naveen Somasunderam, SUNY Plattsburgh, with an additional question by Evan
O’Dorney, Notre Dame

5.1. Introduction. We look at the equidistribution properties of integer sequences over the
p-adic ball Zp. Some interesting sequences to study are linear recurrence sequences and
p-adic log sequences c1 logp(r1) + c2 logp(r2) where logp is the p-adic logarithm.

Definition 5.1 (Equidistribution mod m). An integer sequence xn is said to be equidis-
tributed mod m if and only if

lim
N→∞

|{xi ≡ j mod m | i = 1, ..., N}|
N

=
1

m
,

for j = 0, ...,m− 1.

Definition 5.2 (Equidistribution in Zp). An integer sequence xn is said to be equidistributed
in Zp if it is equidistributed mod pk for every positive integer k.

Here is a proposition as noted by Niven (See Theorem 5.1 of [3]).

Proposition 5.3. Let xn an integer sequence. If xn is equidistributed mod pk then xn is
equidistributed mod pr for r = 1, 2, ..., k− 1. Moreover, if xn is equidistributed mod m then
xn is equidistributed modulo every divisor of m.

Niven actually gives an additional statement in his theorem - If k is not a divisor of m
then there exists a sequence that is uniformly distributed mod m but not mod k. He gives
an explicit construction of such a sequence (see [3]).

Example 5.4 (Fibonacci Sequence). Let’s look at the equidistribution of the Fibonacci
sequence F0 = 1, F1 = 1 and Fn+1 = Fn + Fn−1. Then

Fn = {1, 1, 2, 3, 5, 8, 13, 21, 34, ......}.
Considering this mod 2 we get

Fn mod 2 = {1, 1, 0, 1, 1, 0, 1, 1, 0, ......},
since odd + odd is even and even + odd is odd. Clearly, Fn is not equidistributed mod 2,
and hence not equidistributed mod 2k for any k by Proposition 5.3.

Let D(a, 1/pk) = a+pkZp. Definition 5.2 is equivalent to the following criteria for equidis-
tribution in Zp
Proposition 5.5. An interger sequence {xn} is equidistributed in Zp if and only if for every
a in Zp and every k ∈ N, we have

lim
N→∞

∣∣∣∣∣
∣∣D(a, 1/pk) ∩ {x1, ..., xN}

∣∣
N

− 1

pk

∣∣∣∣∣ = 0.
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This motivates a definition of discrepancy as follows

Definition 5.6. The discrepancy of a finite integer sequence {x1, x2, ..., xN} in Zp is

DN = sup
a∈Zp, k∈N

∣∣∣∣∣
∣∣D(a, 1/pk) ∩ {x1, ..., xN}

∣∣
N

− 1

pk

∣∣∣∣∣ .
Some elementary arguments show that

1

N
≤ DN ≤ 1.

5.2. List of Questions and Conjectures.

(1) Conjecture: Show that the discrepancy of the Fibonacci sequence in Z5 is O(1/N),
which is the best possible.

(2) Derive a general lower bound estimate for the discrepancy DN of a sequence xn in
Zp.

(3) Hellekalek in [1, 2], studied equidistribution modulo 1 using p-adic arithmetic. In
particular, in [1] he derives a general discrepancy bound for sequences modulo 1 using
the character group of Zp. Moreover, it is shown in [2] that an integer sequence f(n)
in Zp is equidistributed if and only if the sequence xf(n) is equidistributed modulo
1, where xn is the van der Corput sequence and xf(n) is the subsequence indexed by
f(n). Therefore, it would be interesting to study how discrepancy bounds for integer
sequences in Zp would be related to corresponding subsequences of van der Corput
sequences modulo 1.

(4) (O’Dorney) Let {an} be a sequence of integers satisfying a linear recurrence with
constant coefficients, and let p be a prime. Assume that things are generic enough
(e.g. the sequence is not periodic, and the constant term of the recurrence is a p-adic
unit). Can one show that {an} equidistributes with respect to a certain measure that
is locally constant almost everywhere? Can one also show that the discrepancy is
best possible, namely O(1/N)?
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6. Preperiodic points of morphisms over finitely generated fields (Tucker)

Posed by: Thomas J. Tucker, University of Rochester

Question 6.1. Let X be a quasi-projective variety and let f : X −→ X be a finite morphism
and let K be a finitely generated field over which f is defined. Let Prep(f) be the preperiodic
points of f . How generally can we say that Prep(f) ∩X(K) is finite?

Here are two possible formulations. In each case, for m > 0 and n ≥ 0, we let Xm,n be the
set of x ∈ X such that fm+n(x) = fn(x).

(1) Suppose that Xm,n is finite for any m,n. Is Prep(f) ∩X(K) is necessarily finite?
(2) More generally, let Prep∗(f) be the set of preperiodic points that do not lie in a

positive dimensional component of Xm,n for any m,n. Is Prep∗(f) necessarily finite?
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7. Elliptical vs polygonal billiards (Zannier)

Posed by: Umberto Zannier, Scuola Normale Superiore, Pisa

The following is true on an elliptical billiard: “For each fixed angle α ∈ (0, π/2) and a given
point P on the boundary, there are only finitely many pairs of periodic billiard trajectories
through P forming an angle α at P.”

Question 7.1. For which polygonal billiards is the above statement true? For instance it
may be shown that it is not generally true on parallelogram-billiards (though it is true for
certain ones of them).
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