

CS 2133: Computer Science II

Required Course: Required
Course Number: 2133
Course Name: Computer Science II
Credit Hours: 3
Lecture Hours: 3
Lab Hours: 1.5
Instructors: Dr. Christopher Crick

Book Title(s): Java: An Introduction to Problem Solving and Programming (8th Edition)
Book Author(s): Walter Savitch
Book Year(s): 2017

Course Description: Recursive algorithms. Intermediate methods of searching and sorting.
Mathematical analysis of space and time complexity, worst case, and average case performance.
Graphical user interfaces, event-driven programming, multithreaded program design, networking
and the internet.

Course Prerequisites: CS 1113 (Computer Science I(A)) or equivalent

Course Goals: Students should be able to

• Design and implement object-oriented class hierarchies to model complex problems
• Build medium-sized event-driven Graphical User Interface (GUI) programs carefully

designed according to Model-View-Controller architecture
• Interact using binary and text streams with filesystems and network sockets
• Understand and design applications around internet protocol specifications
• Implement simple multithreaded programs
• Understand the basics of algorithmic big-O analysis
• Choose appropriate data structures for particular tasks, based on algorithmic complexity

Student Outcomes: This class addresses the following student outcomes from the criteria for
accrediting computing programs:

Student
Outcome

Course
Outcome

1 • Translate requirements documents into effective code-based solutions.
• Refractor and reorganize code to increase clarity, maintainability and

correctness.
2 • Use debugging strategies and tools effectively.

• Implement test harnesses to evaluate program performance and
adherence to requirements.

3 • Write code that communicates its purpose clearly and effectively, using
comments and self-documenting variables, methods and organization.

• Use, understand and produce API documentation for library classes.
4 • Understand how errors in software can have dangerous or fatal

consequences, and use design strategies, tests, programming language
features and tools to reduce the likelihood of such bugs surviving the
coding processes

6 • Use appropriate design patterns such as Model-View-Controller to
create complex GUI programs.

• Identify and analyze resource constraints such as time, space and
bandwidth.

• Appropriately select data structures to minimize big-O resource use.

Course Topics:

Knowledge Area Total Hours of Coverage
Algorithms and complexity (AL) 9

Architecture and Organization (AR) 1
Human-Computer Interaction (HCI) 4

Information Assurance and Security (IAS) 1
Networking and Communication (NC) 1.5

Operating Systems (OS) 1
Programming Languages (PL) 9.5

Software Development Fundamentals (SDF) 10
Software Engineering (SE) 2
Systems Fundamentals (SF) 0.5

Social Issues and Professional Practice (SP) 0.5

Knowledge Area Knowledge Unit Topics Covered Hours
AL Basic Analysis All tier 1, analysis of

iterative and
recursive algorithms

2

AL Algorithmic
strategies

Divide-and-conquer,
dynamic

programming

2

AL Fundamental Data
Structures and

Algorithms

All tier 1 and tier 2
except graphs and
graph algorithms

3

AL Basic Automata
Computability and

Complexity

Regular expressions,
introduction to the P
and NP classes and

the P vs NP problem

1

AL Advanced Data
Structures

Algorithms and
Analysis

Balanced trees 1

AR Digital Logic and
Digital Systems

Overview and history
of computer

architecture, physical
constraints

0.5

AR Machine Level
Representation of

Data

Bits, bytes and
words, signed and
twos-compliment
representations

0.5

HCI Designing Interaction Principles of
graphical user

interfaces, elements
of visual design

1

HCI Programming
Interactive Systems

Software architecture
patterns, event

management and user
interaction, widget

classes and libraries,
modern GUO

libraries

3

IAS Defensive
Programming

Race conditions,
correct handling of

exceptions and
unexpected behaviors

1

NC Introduction Roles of different
layers

0.5

NC Networked
Applications

Naming and address
schemes, HTTP as an

application layer
protocol, socket APIs

1

OS Overview of
Operating Systems

Role and purpose of
operating systems

0.5

OS Scheduling and
Dispatch

Processes and threads 0.5

PL Object-oriented
Programming

All 4

PL Functional
Programming

First-class functions,
defining higher-order

operations on
aggregates

0.5

PL Event-Driven and
Reactive

Programming

All 3

PL Runtime Systems Dynamic memory
management

approaches and
techniques

0.5

PL Advanced
programming

Constructs

Lazy evaluation and
infinite streams,

control abstractions,
string manipulation
via pattern matching

1

PL Concurrency and
Parallelism

Constructs for thread-
shared variables and

shared-memory

0.5

SDF Algorithms and
Design

All 3

SDF Fundamental
Programming

Concepts

All 3

SDF Fundamental Data
Structures

All 3

SDF Development
methods

Program correctness,
simple refactoring,

debugging strategies,
documentation and
programming style

1

SE Software Design System design
principles, design
paradigms, design

patterns

1

SE Verification and
Validation

Testing fundamentals 1

SE Computational
Paradigms

Basic building blocks
and components of
computer, hardware
as a computational

paradigm

0.5

SE History History of computer
hardware, software,

networking, pioneers
of computing, history

of the Internet

0.5

